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Fig. 1. ShuttleSpace is an immersive analytics system that allows a badminton coach to analyze the trajectory data from the player’s
perspective. a) The trajectories are visualized in a full-size simulated badminton court. Two semi-donut charts are displayed on the
left and right side of the user’s field-of-view (FOV) to present the usage and winning rates of the trajectories, respectively. b) Two
grid-based visualizations show the distributions of usage and winning rates along the vertical positions. c) Comparing the usage and
winning rates between two categories of trajectories.

Abstract—We present ShuttleSpace, an immersive analytics system to assist experts in analyzing trajectory data in badminton.
Trajectories in sports, such as the movement of players and balls, contain rich information on player behavior and thus have been
widely analyzed by coaches and analysts to improve the players’ performance. However, existing visual analytics systems often present
the trajectories in court diagrams that are abstractions of reality, thereby causing difficulty for the experts to imagine the situation on the
court and understand why the player acted in a certain way. With recent developments in immersive technologies, such as virtual reality
(VR), experts gradually have the opportunity to see, feel, explore, and understand these 3D trajectories from the player’s perspective.
Yet, few research has studied how to support immersive analysis of sports data from such a perspective. Specific challenges are rooted
in data presentation (e.g., how to seamlessly combine 2D and 3D visualizations) and interaction (e.g., how to naturally interact with
data without keyboard and mouse) in VR. To address these challenges, we have worked closely with domain experts who have worked
for a top national badminton team to design ShuttleSpace. Our system leverages 1) the peripheral vision to combine the 2D and 3D
visualizations and 2) the VR controller to support natural interactions via a stroke metaphor. We demonstrate the effectiveness of
ShuttleSpace through three case studies conducted by the experts with useful insights. We further conduct interviews with the experts
whose feedback confirms that our first-person immersive analytics system is suitable and useful for analyzing badminton data.

Index Terms—Movement trajectory, badminton analytics, virtual reality

1 INTRODUCTION

Trajectory analysis is a key concern in sports data science; thus, it has
been widely studied in soccer [2, 30], tennis [27], table tennis [42], and
badminton [33]. In badminton, coaches often analyze the trajectories
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of shuttles or players from a 3D perspective, as the heights of the
flying shuttle and the player’s movement are non-negligible factors
for the success of a rally. Prior research [6, 39] on trajectory analysis
for badminton mainly develops dimensionality reduction and view
coordination methods to visualize the 3D information on a 2D screen,
thereby leading to a cognitive load of the analyst who has to mentally
reconstruct the 3D scenario. Furthermore, these systems usually display
the data in court diagrams, which is an abstraction of reality, causing
experts to face difficulty in imagining the situation on the court and
understanding why the players behaved in a certain manner.

Recent advances in immersive technology, especially VR, have shed
new light on 3D trajectory analysis. Existing research [21, 35, 44,
47] has repeatedly reported that VR offers benefits such as increased
spatial understanding, rich semantic interaction, peripheral awareness,
and large information bandwidth. In badminton, VR provides two
unique benefits that traditional desktop platforms cannot provide: 1)
the ability to present the 3D representation in a “real 3D” form, which
is particularly suitable for visualizing 3D trajectory data; and 2) the



capability to simulate the real court in an immersive environment, which
allows the analysts to see and feel the 3D trajectories from the player’s
perspective. Considering these benefits, we aim to design a VR-based
interactive analysis system to assist badminton coaches in analyzing
trajectories.

We worked closely with four domain experts to develop such an
immersive analytics system. Our domain experts include badminton
coaches and data analysts who have worked for a top national bad-
minton team in the world over 5 years. During the collaboration,
we came across two major challenges. First, it is difficult to seam-
lessly visualize the 3D trajectory data together with 2D statistical
information (e.g., usage rate) from a player’s perspective. Experts
typically analyze both the 3D trajectory data and 2D statistical informa-
tion. In particular, the experts would like to perceive the data from the
player’s perspective, which allows perceiving the kinematic features
effectively (e.g., the highest point of trajectories, the distance between
the placement and the player’s position) by leveraging the propriocep-
tion and spatial awareness. However, careful design is necessary to
visually combine 3D and 2D data without hindering the perceptual
effectiveness, such as occlusion and distortion. Though prior work [48]
investigates the ways to combine 3D and 2D visualizations in immer-
sive environments, only few methods have been proposed to achieve
this combination from a first-person view. Second, an efficient and
natural approach for badminton trajectory selection in VR is ab-
sent. When exploring the trajectories, analysts have to frequently
interact with various trajectory partitions to perform in-depth analysis.
However, selecting trajectories, a type of 3D curve data, in VR environ-
ments is tedious and demanding. Most of the existing methods, such as
bi-manual interaction [12] and elaborate gesture [11], are designed for
3D line data that can be moved and rotated; thus, they are not suitable
for our scenario where the trajectories are fixed in a simulated court.

To address these challenges, we propose ShuttleSpace, an immer-
sive system that enables coaches to analyze badminton strokes through
interactively exploring the trajectories from a player’s perspective. To
address the first challenge, we design a first-person perspective visual-
ization that leverages the peripheral vision to seamlessly blend the 3D
trajectory data with 2D statistical information. Peripheral vision [38] is
the vision that occurs outside the center of gaze (i.e., 10°). Different
from traditional desktop platforms that usually display the data within
the center of gaze, VR devices allow us to display the data in a wide
field-of-view (FOV). Thus, we adopt a focus+context diagram to visu-
alize the 2D statistical information in the near-peripheral (i.e., 15°-30°)
vision as the context for the 3D trajectory data. For the interaction
challenge, we exploit the VR controller and design a stroke metaphor
that enables the analysts to select trajectories by swinging the controller
to imitate stroking a shuttle. We achieve this by developing a machine
learning-based model that queries trajectories based on the user’s action.
Such a selection method is natural for badminton experts and allows
them to efficiently interact with 3D trajectories in VR without using
keyboard and mouse. To demonstrate the usefulness of ShuttleSpace,
we present three case studies conducted by the domain experts on a
real-world dataset. We further report the experts’ feedback gathered
from the post-study interviews.

Our primary contribution is the design and implementation of Shut-
tleSpace. The system features 1) a novel first-person perspective visual
design that seamlessly combines 2D and 3D visualizations and 2) a
metaphorical interaction to select trajectories efficiently and naturally.
We evaluate our system by presenting three case studies on real-world
datasets conducted by four domain experts. We also summarize the
experts’ feedback on using the immersive system to analyze badminton
data.

2 RELATED WORK

Visualization for Sport Trajectory. Sports trajectory data has been
widely studied. Researchers have developed various visual analytics
systems for trajectory data in different sports such as tennis [8, 27, 28],
baseball [16,25], and soccer [37]. These systems can be roughly divided
into two categories: visualizing trajectories in 2D and 3D.

Typically, 2D visualization techniques present the trajectories from

a top down view, allowing the analysts to investigate the movements
of the players on the ground [42, 43]. To reduce the visual clutter of
large-scale trajectories, researchers have utilized aggregation methods,
such as convex hulls [2] and K-means clustering [30], to group the
trajectories into clusters. Besides the trajectory data, many systems
provide additional details by using focus+context techniques. Sacha et
al. [31] designed and proposed a court overview accompanied by cus-
tom views to assist the analysts in identifying meaningful events. Soc-
cerStories [24] visualizes important trajectories in each soccer phrase
with extra information to facilitate the exploration. To capture fea-
tures related to the trajectory, Forvizor [43] detects formations from
players’ position and presents the formation evolution through a narra-
tive timeline representation. Although these 2D methods demonstrate
effectiveness in analyzing the player trajectories, they cannot be di-
rectly adapted to the ball trajectories whose height does matter. On
the other hand, several visualization systems have been proposed to
support analyzing the trajectories of balls in 3D space. For example,
LucentVision [26] provides 3D virtual replays of the ball trajectories to
help analysts exam the quality of serves. Baseball4D [9] reconstructs
and presents the 3D trajectories of balls using a heatmap to support
analyzing the relationships between hits and ball drops in baseball
games. Chen et al. [7] approximated 3D volleyball trajectories from
video frames and then classified them to infer the tactical information.

All of these systems, however, are designed for traditional desktop
platforms; thus, they do not fully leverage the benefits of VR environ-
ments, such as stereoscopic 3D and reality simulation. In this work, we
design a VR system to support immersive analytics of badminton data.
First-person-oriented Sports Applications in VR. A first-person-
oriented sports application allows the user to see, explore, and ex-
perience the data and situation from a player’s perspective [4]. Given
the emergency of VR techniques, this method has been increasingly
used over the last several years [15,34,40,41]. For instance, to improve
the player’s ability to estimate the position of other players, Shimizu
and Sumi [34] developed a head-mounted display (HMD) VR system
that simulates ball games from a first-person view and allows the user
to rearrange all players. The user can then perform actions specific
to the ball game such as passing and receiving a ball. Besides HMD,
additional devices and equipment have been used to simulate reality.
Nozawa et al. [23] proposed a VR ski training system in which the user
can ski on an indoor ski simulator and follow a virtual coach through
an HMD. HeatSense [29], a thermal sensory supplementation system
for superhuman sports, provides hot and cold experience for the user in
the VR based on the thermal and vibrotactile feedback.

However, these first-person perspective VR applications mainly fo-
cus on reproducing the scenario and experiences rather than visualizing
data to support visual analysis. Rarely has research explored how
to enable a first-person-oriented analysis of sports data in VR. We
systematically study this issue and propose a first-person perspective
immersive analytics system that features novel visual design and inter-
action for 3D and 2D sports data.
Selection Techniques for Immersive Visualization. Selection is a
fundamental task in exploratory analysis because it is a prerequisite
for many other subsequent interactions [3]. Although researchers have
explored the selection of 3D visualizations on traditional desktop plat-
forms, such as 3D point-based selection [49], only a few studies have
been conducted on the selection techniques specific for immersive visu-
alization. Prior work has introduced selections for abstract and spatial
data. Huang et al. [11] designed dedicated gestures to allow users to
select nodes and edges in immersive graph visualizations using bare
hands. However, the system is limited by the low accuracy of recog-
nizing gestures. Instead, VRRRRoom [36] combines VR HMDs with
touch input surfaces to support the analysis of medical images. In the
system, the user can interact with the volume visualization through ges-
tures on a desktop surface. The gesture recognition is accurate due to
the touch input surface. Other than gestures, Hurter et al. [12] proposed
FiberClay, a system that utilizes VR controllers to enable 6 degree-
of-freedom (DOF) selection of 3D trajectories in VR environments.
In FiberClay, the user can progressively filter trajectories through bi-
manual brushing while easily navigating to different viewpoints, e.g.,



rotating and scaling the trajectories.
Inspired by FiberClay, we also utilize VR controllers to support

accurate 6 DOF interactions of 3D trajectories. However, the power of
FiberClay will be weakened in our scenario, since the simulated court
and the trajectories cannot be moved, rotated, and scaled. We address
such issues with a novel metaphorical approach that allows the user to
select shuttle trajectories by swinging the VR controller, which mimics
swinging a racket.

3 BACKGROUND AND DESIGN REQUIREMENTS

In this section, we introduce the background and data of badminton
analysis, followed by the requirement analysis and system workflow.

3.1 Background
Badminton is a sport that opposes two or four players in a rectangular
court divided into two equal halves by a net. Two players, one on
each side, hit a shuttle with a racket and aim to land the shuttle within
the opponent’s half-court. A formal badminton match consists of a
best-of-three series in which the first player who wins two games wins
the series. To win a game, a player needs to win 21 rallies. Specifically,

• A rally is the process of scoring one point, which starts from a
serve (i.e., the first shot), ends with the score of one side, and
usually contains a series of shots between the opposing players.
To win a rally, the player has to perform high-quality strokes that
limit the opponent’s performance.

• A stroke is the swing motion of an arm to complete a shot. The
process of a stroke usually involves three stages: 1) a player
moves to a hit position, 2) the player strokes the shuttle that flies
towards the opponent’s half-court, and 3) the opponent moves
to return the shuttle. To perform a high-quality stroke, a player
usually uses different techniques based on the specific situation.

• A technique is a method to perform a stroke, such as lob, net shot
or smash. A technique can further be divided into subtypes, such
as defensive lob and offensive lob. Different techniques result
in different speed and trajectories of a shuttle. A player should
improve his/her skills and understanding of techniques to perform
high-quality strokes.

In summary, a stroke is the minimal “tactical unit” for winning a
badminton game. Thus, coaches are particularly interested in and pay
attention to the analysis of players’ strokes. Coaches usually collect the
data records of strokes in a badminton match.

3.2 Data Description

Table 1. Main attributes of a stroke record.

Trajectory Data

T 1
player Player trajectory The trajectory of the player who

moves to perform the stroke, which is
defined by its start end end positions
{Pstart ,Pend}.

T 2
player Player trajectory The opponent’s trajectory to return the

shuttle, which is also defined by its
start end end positions {Pstart ,Pend}.

Tshuttle Shuttle trajectory The 3D trajectory of the shuttle, de-
fined by its start, highest, and end po-
sition {Pstart ,Phighest ,Pend}.

Statistical Data

Rusage Usage rate The usage frequency of the technique
used in this stroke.

Rwin Winning rate The winning frequency of the tech-
nique used in this stroke.

The main attributes of a stroke record can be divided into two parts,
namely, trajectory data and statistical data (Table 1):

• Trajectory data is a kind of physical data, including two player
trajectories Tplayer (one for each player) and one shuttle trajec-
tory Tshuttle. A player trajectory is recorded as two points, i.e.,
Tplayer = {Pstart ,Pend}, while a shuttle trajectory is recorded as
three points, i.e., Tshuttle = {Pstart ,Phighest ,Pend}. Each point is
represented by its 3D position (x,y,z) and velocity (vx,vy,vz).
We call the positions of these points kinematic features of a tra-
jectory. In this work, these key points are extracted from match
videos [32]. We then reconstruct Tshuttle based on the key points
with a high-accuracy aerodynamic model [33]. The model con-
siders several factors including gravity, air drag force, and the
shape of the shuttle, and allows us to calculate the 3D position of
a shuttle with respect to time. As for Tplayer, we assume that the
players moved in straight lines.

• Statistical data is a kind of abstract data that has no predefined
spatialization, including the winning rate Rwin and usage rate
Rusage of the technique used in this stroke.

A stroke record also includes the used technique, the outcome (i.e., win,
lose, or continue), and a pointer to its previous stroke.

3.3 Requirement Analysis
To understand how coaches and analysts work on badminton data, we
held two-hour weekly meetings with four domain experts over one year.
One of the experts is a badminton professor who works for a top national
badminton team. The other three experts are postgraduate students of
physical education with a focus on badminton. They are proficient in
badminton and have rich experiences in badminton training.

During the requirement analysis, we actively communicated with
the experts, demonstrated several prototype systems (e.g., desktop-
based and VR-based) to them, and collected feedback to refine our
design goals. After several rounds of iterations, we summarize the
requirements from the experts and conceive five design goals:
G1 Visualizing the data from the player’s perspective. What

does the situation look like from the player’s perspective? How
far and fast should the player run to return the shuttle? The
experts are particularly interested in understanding the situations
of a stroke from the player’s perspective. They expect to embed
the data on the court so that they can see and feel the situation
straightforwardly rather than imagining the scene. Therefore, a
first-person perspective design that simulates the real court and
presents the data in a player-centred manner should be adopted.

G2 Allowing multi-granularity analysis of trajectory data. Are
there any patterns in the strokes? What kinds of strokes are most
frequently used by players? What are the usage/winning rates of
these strokes? To answer these questions, experts often cluster
strokes into categories, examine different categories to identify the
patterns of good strokes and finally analyze the individual strokes.
Therefore, the system should allow multi-granularity analysis, i.e.,
support grouping strokes into categories and unfolding a category
for investigating individual strokes.

G3 Supporting visual correlation analysis. How is the outcome of
a stroke affected by the kinematic features? How is the outcome
affected by the techniques used in the previous or next stroke?
When probing into a specific category of strokes, the experts aim
to understand the relationship between kinematic features and the
usage/winning rate. Furthermore, the relationship between the
stroke outcome and techniques used in the previous stroke is an
important factor to develop a winning strategy. Thus, the system
should support such correlation analysis.

G4 Providing natural interactions for searching strokes. What
are the usage and winning rates of strokes like this? An expert
typically queries a specific part of the strokes. However, the
searching conditions can be complex and indescribable, e.g., the
strokes of swinging the arm in a certain direction at a certain
speed. To this end, natural interactions should be provided to
enable the searching of strokes.

G5 Revealing the differences between strokes for comparison.
What are the differences between two strokes? A comparison
is a necessary function that can help experts gain insights. Aside



from analyzing the different strokes of a player, analyzing the
strokes between two players is particularly useful to develop a
winning strategy. Thus, the system should provide effective meth-
ods for comparative analysis.

3.4 System Workflow

Fig. 2. System workflow for stroke analysis.

Figure 2 shows the analysis workflow of our system. First (Fig. 2a),
the user chooses the strokes of a specific technique (e.g., lob, smash) as
the study target. Then (Fig. 2b), our system classifies the strokes into
multiple categories based on their trajectories using HDBSCAN [22].
The user can observe the visual summary of different categories and
select a category by using natural interactions for further investigation.
After choosing a category (Fig. 2c), our system allows the user to
explore the relationships between trajectory and statistical data. Finally
(Fig. 2d), the user can select a different subset of data for comparisons.

4 SHUTTLESPACE

In this section, we present ShuttleSpace, a stroke analysis system that
incorporates the five design requirements. We first use a usage scenario
to demonstrate the workflow and then introduce the three key compo-
nents, i.e., trajectory data visualization, statistical data visualization,
and natural interactions.

4.1 Usage Scenario
Samwell is a coach of a university badminton team. To prepare for
the next match of Jon, the best player of his team, Samwell needs to
analyze Jon’s lob strokes as it is used most frequently by Jon.

Samwell loads Jon’s stroke data into ShuttleSpace and chooses lob
strokes as the study target, following the system workflow in Fig. 2.
After wearing the HMD, Samwell is immersed in a full-size badminton
court simulated by the VR system. Samwell appreciates this simulated
court because it allows him to perceive the data from Jon’s perspective
(G1). Each stroke is visualized as one shuttle trajectory and two players’
trajectory. ShuttleSpace automatically groups these trajectories into
five categories (Fig. 1a) (G2). For each category, the system aggregates
the trajectories within and shows an average trajectory as the visual
summary. Different categories have different colors. Two semi-donut
charts are displayed on the left and right sides of Samwell’s FOV,
presenting the Rusage and Rwin of different categories (G3).

Samwell is interested in the green category (i.e., C0) because it has
the highest Rusage but a low Rwin (Fig. 1a). He selects this category by
swinging the VR controller to imitate stroking a shuttle (G4). Shut-
tleSpace then enters a detail view (Fig. 1b) and unfolds the trajectories
in this category. Samwell wants to check the relationships between
the Rusage or Rwin and the height of Phighest . He opens Grid View that
presents the distributions of Rusage and Rwin along the height of Phighest
(G3) using two grid-based visualizations (Fig. 1b). He discovers that
most of the trajectories with a middle Phighest have a high Rusage but a
low Rwin while those with a high or low Phighest have a high Rwin.

Finally, Samwell further compares (G5) C0 with another category
(i.e., C1) that has a high Rwin. The comparison in Grid View (Fig. 1c)
confirms that trajectories with a low Phighest tend to have a high Rwin.

4.2 Visual Design for Trajectory Data
We leverage VR to fulfill the design goal that has the highest priority
(G1), as VR offers the ability to simulate the reality, allowing the expert
to view and feel the data and situation from the player’s perspective.
Specifically, in ShuttleSpace, we simulate a full-size (i.e., 6.1×13.4m2)
badminton court (Fig. 3), where the trajectory data is presented.

Visualization of a single stroke. According to Table 1, a stroke is
visualized as three trajectories, namely, a ballistic trajectory for the
shuttle (Tshuttle in Fig. 3) and two arrow trajectories for the two players

1
playerT

2
playerT

shuttleT
highestP

startPendP
startP

endP

startP

endP

Fig. 3. A visualization of the trajectory data of a stroke, including three
trajectories: one shuttle trajectory in the air and two player trajectories on
the ground. The arrows indicate the movement direction of the players.

(T 1
player and T 2

player in Fig. 3). These trajectories present the complete
process of a stroke: from one player moving to shoot the shuttle to
his/her opponent being ready to return it. To facilitate the analysis, we
highlight the key points in the trajectories, that is, {Pstart ,Phighest ,Pend}
in the Tshuttle and {Pstart ,Pend} in a Tplayer. By observing these tra-
jectories, experts can effectively judge the situation on the court and
assess the quality of the stroke. For example, the expert can stand at the
opponent’s position to see the Phighest of the coming shuttle and easily
justify whether the shuttle will be intercepted by a powerful smash or
cause a passive return.

Raw

Summary

Fig. 4. A visual summary of multiple strokes in a category. In overview
mode, the raw trajectories are aggregated to show a trajectory (in dark
purple). In a detail mode, the average trajectory is unfolded to the raw
trajectories (in light purple).

Visual summary of multiple strokes. A visual summary of the trajec-
tory data is necessary (G2) due to the existence of thousands of strokes
in a badminton match, and visualizing them all leads to severe visual
clutter. Thus, we use a hierarchical DBSCAN (HDBSCAN) [22] to
group the trajectory data into several categories. We select HDBSCAN
because it is a non-parametric algorithm that enables us to achieve the
clustering results without specifying the cluster numbers.

We use three steps to cluster the trajectories: 1) after reconstructing
the trajectories (two Tplayer and one Tshuttle) of a stroke based on the
seven key points, we sample the points on the trajectories by using
equidistant sampling (i.e., every 10cm); 2) next, we import the sampled
points of all trajectories into HDBSCAN to obtain the point clusters; 3)
for each trajectory, we count its points and assign the cluster with the
most number of points to it as its category. There is only one primary
parameter in HDBSCAN, namely, minimum cluster size. In our study,
we empirically set it to 50. The quality of the clustering method was
assessed by our domain experts (using a dataset different from the one
used in the case studies) during the collaboration.

To visualize a category, we aggregate the trajectories within the
category and visualize the aggregated trajectory in the same manner as
a single stroke. Specifically, we average the corresponding key points of
the trajectories within a category and then construct three representative
trajectories (i.e., two Tplayer and on Tplayer) based on these averaged
key points. The representative Tplayer and Tplayer are presented as the
visual summary of the category. Different categories are encoded in
different colors. As shown in Fig. 4, the summary trajectory provides a
concise representation of multiple strokes. We visualize a category in
this manner to include two considerations: 1) reduce the visual clutter
and 2) keep the information of key points as much as possible. An
aggregated trajectory is a simplification and estimation of the category



but preserves the averaged key points of the category, providing the
representative information for the expert. When performing in-depth
investigations, the expert can select a category to unfold it into the raw
strokes (Fig. 4) by using natural interactions introduced in Sec. 4.4.
Visual comparison of trajectory data. Supporting visual comparison
of trajectory data (G5) in ShuttleSpace is natural. We can visualize the
trajectories in the simulated court for a comparison.

4.3 Visual Design for Statistical Data
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Fig. 5. Visualizing the statistical data by leveraging the wide FOV of VR
HMD. The 3D trajectories are naturally displayed at the center of the
gaze (i.e., 10°). The statistical data is shown in the near-peripheral (i.e.,
15° to 30°) by using semi-donut charts and grid-based visualizations. In
practice, we zoom out the semi-donut charts to small icons while the
grid-based charts appear to simplify visual elements in the peripheral
region. The figure at upper-left shows the position of statistical data
display and the 3D trajectories.

The experts intend to explore the relationships between trajectory and
statistical data (G3). Different from trajectory data, which is a type of
physical data with inherent 3D representations, the statistical data (i.e.,
winning rate Rwin and usage rate Rusage) is a type of abstract data that
has no pre-defined spatialization, and thus are preferred to be displayed
in a 2D form. Considering the context of a first-person perspective, we
design Donut View and Grid View to reveal the relationships between
trajectory and statistical data on different levels (Fig. 5).

usageR winR

Fig. 6. Donut View

Donut View—overview level. We use Donut View
(Fig. 6) as it naturally presents Rusage and Rwin of
strokes in different categories [5]. Donut View con-
sists of a left and a right semi-donut charts that
present Rusage and Rwin, respectively. The usage
of techniques used in previous or next strokes are
presented by a smaller semi-donut chart at left. We
place Donut View in the screen space instead of
world space. Thus, Donut View follows the user’s movement and al-
ways appear within the user’s FOV. Donut View adopts a focus+context
paradigm that presents the statistical data as the context of the trajectory
data. Therefore, the presented data in Donut View is dynamic updated
according to the trajectories within the user’s FOV, which means that
only the Rusage and Rwin of the trajectories seen by the user will be
presented. The sectors in Donut View are displayed in descending
order. We use colors to relate the sectors to the categories of trajectory.
The user can further select a sector to check the Rusage distribution of
techniques used in its previous or next strokes. Through Donut View,
the users can naturally perceive the trajectory and statistical data.

The design of Donut View mainly incorporates three considerations:
the visual design should always be 1) legible to the user wherever
he is in the simulated court, 2) occlusion-free with regard to the tra-
jectories, and 3) with high-bandwidth by leveraging the wide FOV
of VR as much as possible. To fulfill the legibility, we place Donut
View in the screen space instead of the world space. For the other two
considerations, we propose to leverage the peripheral vision [13, 14].
Peripheral vision occurs outside the center of gaze (Fig. 5) and allows
perceiving information in parallel with the central vision. Different
from traditional desktop platforms that mainly present information
within the macular, i.e., 10°, VR HMD allows us to display information

in a wider visual field, i.e., 55°. A key observation is that the trajec-
tories are usually located within the macular when the user observes
them. Thus, we can display the extra data in the peripheral vision to
extend the information bandwidth without occluding the trajectories.
Considering the characteristics of human vision system [38], we visu-
alize the statistical data in the near-peripheral (i.e., 15° to 30°) with a
semi-donut shape so that the user can read the visualization effortlessly.
By this, we seamlessly combine the 2D and 3D visualizations. Figure 7
presents several alternative designs but all of them cannot satisfy our
three considerations.

(a) world space (b) screen space: corner (c) screen space: region 

A

B

A

A

A

AA

B

A

A

Fig. 7. Three design alternatives for Donut View . The first row shows the
court and charts from a third-person perspective. The camera indicates
the user’s position and the black frame indicates the user’s screen space.
The second row shows the scenes from a first-person perspective. a)
Display the charts as 3D objects in the 3D world space. b) Fix the charts
at the corner of the 2D screen space. c) Place the charts in the screen
space, close to the target.

usageR winR

Fig. 8. Grid View

Grid View—detail level. When examining the de-
tails of strokes in a category, we present Grid View
(Fig. 8) to reveal the relationships between Rusage or
Rwin and the trajectory data (G3). Specifically, the
experts expect to explore how the kinematic features
of a trajectory (i.e., the position of Pstart , Pend , and
Phighest ) affect Rusage and Rwin.

For the Tshuttle, the experts are mainly interested
in the vertical position of the three key points. Fig-
ure 5 presents an example of analyzing the vertical positions of Phighest .
We use two grid-based visualizations on the left and right side of these
Phighest to visualize the distributions of Rusage and Rwin along the verti-
cal positions, following the same convention in Donut View, i.e., the left
for Rusage and right for Rwin. The colors of these grids also represent
the categories of the strokes.

usageR winR

Fig. 9. Variation of
Grid View

For the Tplayer, the experts focus on the dis-
tances between Pstart and Pend . Thus, we de-
sign a variation of Grid View (Fig. 9). Specif-
ically, we display a polar coordinate on the
ground, which is centered at the aggregated
Pstart , (i.e., the Pstart of the aggregated Tplayer
of this category). The direction of the coordi-
nate follows the FOV of the user. Two grid-
based visualizations are attached on the left and right side, presenting
the Rusage and Rwin distributions along the distance between Pstart and
Pend when user stands at the aggregated Pstart and uses it as a reference
point.

One main purpose of Grid View is to help experts discover outlier
patterns, including the strokes with 1) high Rusage but low Rwin and 2)
low Rusage but high Rwin. From Grid View, the user can easily identify
these patterns by observing which direction the grids in one row lean
to. For example, if the grids in one row lean to the left (e.g., Fig. 5),
then the strokes whose Phighest passes this vertical position are used
frequently (high Rusage) but score less (low Rwin); on the other hand,
low Rusage but high Rwin occur if the grids lean to the right.

Visual comparison of statistical data. We reuse the design of Donut
View and Grid View to support comparisons of statistical data (G5).



Specifically, when the user wants to compare Rusage and Rwin of two tra-
jectories in an overview level, we present them in Donut View (Fig. 12b),
where the color of a sector represents the trajectory it denotes. To com-
pare Rusage and Rwin at a detail level, we use a grouped grid-based
design in Grid View (Fig. 12c), where each row is divided into two
sub-rows, each presenting the data of one trajectory. The color of a grid
also denotes the trajectory it refers to.

4.4 Natural Interaction

Experts require efficient and effective interactions to select trajectories
in VR for interactive exploration (G4). To achieve this goal, we propose
that the interaction should be: 1) intuitive such that it comes naturally
without conscious reasoning for the expert, 2) feasible such that it can
be easily performed by the expert, and 3) expressive such that it is
sufficient for the expert to select the trajectories he wants. Considering
these three issues, we design VirtualStroke, a novel metaphorical inter-
action that allows the user to select trajectories by waving the controller
in a way similar to stroking. This is achieved by a trajectory simulation
with a speed correction based on the user’s motion.

stroke shuttle shot point

Fig. 10. Using VirtualStroke to select trajectories. The user sets a shot
point and uses the controller as a racket to perform a stroke action. The
target trajectories are selected based on the simulation of the stroke.

Metaphorical interaction design. In practice, a shuttle trajectory is
determined by the stroke. A player with a certain badminton skill can
easily control the shuttle trajectory by adjusting the direction, speed,
and position of the stroke. It is also very familiar to our domain experts
that use strokes to specify trajectories. Thus, we design VirtualStroke
that leverages the VR controller to allow the expert to select trajec-
tories through strokes. Specifically, as shown in Fig. 10, to select a
subset of trajectories, the expert moves to a shot region, specifies a hit
point, and holds the controller as a racket to perform a stroke. By this
means, we obtain the hit position and velocity. With these parameters,
ShuttleSpace then selects the target trajectories in two steps: 1) simu-
lating a virtual shuttle trajectory based on the aerodynamic model and
then 2) querying shuttle trajectories whose three key points (i.e., Pstart ,
Phighest , and Pend) are all within 1m (a predefined threshold) of those
of the simulated trajectory. This metaphorical interaction fulfills all
our three design considerations and has many benefits, such as 1) the
VR controller provides the affordance to be held as a racket; 2) the
learning curve is gentle for the experts as they are familiar with stroke
actions; and 3) compared with the keyboard and mouse, the interaction
is expressive to specify trajectories. In addition to VirtualStroke, Shut-
tleSpace also supports other common interactions on the VR platform,
such as click and touch through the controller, as well as gaze-based
interactions supported by the HMD.

Neural network for speed correction. A critical input parameter of
our selection is the hit velocity, which is controlled by waving the VR
controller. However, our experts can hardly swing the controller (which
is quite different from a real racket) as fast as top players. Thus, to
mitigate this mismatch, we use a neural network to correct the stroke
speed of the controller. Specifically, we use a standard three-layer
perceptron to map the stroke speed of the controller to the one of a real
racket. We choose 1 neutron for the output layer and 16 for the others
to strike a balance between robustness and efficiency for the scalability
of our problem—mapping a scalar value to another. A Mean Absolute
Error (MAE) loss function is adopted.

Dataset and Performance. We follow a typical machine learning
pipeline to build up our mapping model [20]. To train the model,
we collected a dataset with over 500 stroke records from a group of
participants, including five experienced amateurs and the five domain
experts collaborated with us. Specifically, we asked the participants
to perform strokes according to the displayed shuttle trajectories. For
each given trajectory, we asked the participants to repeat the stroke
three times. In total we collected 350 and 150 records from the domain
experts and experienced amateurs, respectively. Then we used the
stroke speed as the input and the real stroke speed as the ground truth.
Overall, the records are of high quality and collected from participants
with similar skill levels of the target user of ShuttleSpace. Therefore,
the dataset will not introduce a biased model. Figure 11a presents the
MAE per epoch for the training and testing sets in the training process.
We notice that the MAE of the training set decreases smoothly, while
the one of the testing set decreases with a small gap to the training
MAE. This observation reveals that our model does not suffer from the
overfitting problem [10].

We evaluated the model by assessing its time performance and ac-
curacy. To evaluate the time performance, we counted the calculation
time for a stroke record from model input to output and repeated this
process for 500 times on a computer equipped with a CPU. The average
calculation time for a stroke record is 187ms. Since our model structure
is not complex, the computation is fast enough to support interactions.
The computation can be faster by using a GPU. As for the accuracy,
we split the dataset into training and testing sets with a ratio of 9:1 and
calculated the error of each testing record. The mean absolute error is
1.04m/s. This speed error is acceptable considering the high shuttle
speed (i.e., 10m/s ∼ 80m/s) produced by the top player. Figure 11b
further presents the distribution of relative errors between testing out-
puts and their ground truths in different speeds, indicating that our
model can achieve a low error rate (< 5%) for various stroke speeds.

(a) (b)

Fig. 11. Left: The error per epoch for the training and testing sets. Right:
The relative error between testing outputs and ground truths with different
stroke speeds.

5 IMPLEMENTATION

ShuttleSpace is built on HTC VIVE Pro VR system [1] that includes a
VR headset, a pair of handheld controllers, and other accessories. The
VR headset provides a stereoscopic display with a 110° FOV, enabling
the content to be presented in a real 3D form. To track the user’s
location and body motions, we utilize a SteamVR system so that the
user can move as if he/she were in a real badminton court. These
features ensure an immersive first-person experience. The controllers
we used can record instantaneous velocity and position, which are
critical for simulating a stroke in Sec. 4.4. Besides the hardware, our
system is implemented based on Unity with C# and HLSL that leverage
GPUs to ensure the frame rate and reduce the VR sickness. We use
XChart package to create the visual designs in 4.3. With a Nvidia 1080
GTX graphics card and an Intel Core i7 CPU, our system can achieve
50 frames per second in the case studies and expert interview.

6 EVALUATION

We evaluate our system by inviting four domain experts to conduct case
studies on a real-world dataset. We first present two insights founded



Fig. 12. Insight I shows that why C1 is similar to C7 but has a higher Rwin. a) C1, which represents the trajectories of defensive lob, has the highest
Rwin. The most frequently used previous technique (TP) of C1 is net shot. C7 is very similar to C1 but has a low Rwin. b) A comparison between C1 and
C7. The most frequently used previous technique of C7 is also net shot. c) The Pstart in C1 are higher than those in C7. d) The Phighest in C1 are also
higher than those in C7. e) The Pend in C1 are lower than those in C7. f) The pattern of using high defensive lob to defuse a net shot also exists in C2.

by the experts and their exploration processes. We then summarize
the feedback from the post-study interview. We provide an additional
insight in the supplemental materials.

6.1 Experiment Settings

Our main experiment settings are as follows:
Dataset. The dataset comprises nine men’s singles matches from the
Badminton World Federation World Tour 2018 season, involving 6 of
the top 10 men’s singles players in the world in 2018. The dataset
contains 3812 strokes in total. In the study, all the experts focused
on the lob strokes, which occupy 80% of the records. Our system
clustered these lob strokes into eight categories. Please note that the
dataset only contains the key points of Tshuttle and Tplayer rather than
real trajectories. We reconstructed the trajectories using the method
mentioned in Sect. 3.2. An improved case study can be conducted once
datasets of real trajectories are available.
Participants. Four badminton experts (referred to as E1-E4) partici-
pated in our case studies. One of the experts is a professor of badminton
sports who has worked for one of the top national badminton teams
over five years. He also attended the two-hour weekly meetings during
the collaboration. The three other experts, who had never been pre-
sented the system before, are majoring in physical education with rich
experiences in badminton analysis and training. All the experts had not
explored the dataset used in the evaluation before our study.
Apparatus. The studies were conducted in a 7m×7m×3m room that
covers the space of a half-court. The size of the simulated court in our
system was similar to a real standard badminton court. We allowed
the expert to switch the half-court by pushing a button. We used a
HTC VIVE Pro headset equipped with a wireless adaptor to ensure the
experts can freely move in the room.
Procedure. We first introduced the VR platform and our system to
the experts before exploring the data. We then helped the experts in
wearing the devices and adjusted the VR headset for each expert to
ensure comfortablility. The experts were encouraged to freely explore
the system and ask questions regarding the system voluntarily. We
began the studies when the experts were confident about using the
system. During the studies, The experts shared their real-time screen in

the VR with us. The experts were allowed to ask questions regarding
the system and take a rest if needed. The exploration lasted 30 minutes
and would then be completed based on the experts’ preference. Finally,
we conducted a post-task interview to gather feedback.

6.2 Cases and Insights
Insight I: Using a high defensive lob to defuse a net shot.
This case conducted by E1 shows how the expert found an interesting
defensive lob pattern that can cope with the threat of the opponent’s
net shot. There are 945 stroke records in this case. Through Donut
View (Fig. 12a), the expert quickly found that category1 (C1), a kind
of defensive lob, has a significant higher Rwin than others. By walking
in the simulated court, he noticed that category7 (C7), also a kind of
defensive lob, is very similar to C1 but has a lower Rwin (Fig. 12a). To
figure out the reasons behind such Rwin difference, the expert decided
to compare these two categories. Thus, he selected these two categories
by using VirtualStroke. ShuttleSpace then unfolded the trajectories in
these two categories (Fig. 12b).
Step1: Checking the previous technique. Based on the domain
knowledge, the expert knew that a stroke is mainly affected by the
technique used by the opponent in the previous stroke. Thus, he first
checked the technique of the previous strokes in C1 and C7, respectively.
According to the inner donut chart in Donut View (Fig. 12a and b), he
identified that both the previous techniques of C1 and C7 are dominated
by net shot, which means the Rwin difference between C1 and C7 is
not caused by the previous technique. Conclusion: Both C1 and C7 are
mainly used to cope with net shot.
Step2: Comparing the trajectory key points. Next, the expert fil-
tered the strokes and focused on those whose previous techniques are
net shot. He came to the stroke area and observed the Pstart of the
shuttle trajectories, i.e., the shot points. As shown in Fig. 12c, the
height of Pstart in C1 is higher than those in C7. Most of the Pstart in
C1 are higher than 0.5m. He knew that the higher the Pstart is, the
greater is the flexibility for the player to adjust the stroke direction
for a high-quality return. Then he raised his head to check Phighest of
the trajectories. The distribution in Grid View presented that most of
Phighest in C1 are higher than those in C7 (Fig. 12d). Specifically, a



majority of Phighest in C1 are higher than 4.5m. The expert explained
that a higher trajectory indicates a slower flying speed of the shuttle,
which restricts the opponent from intercepting the shuttle with a smash.
Finally, he went to the opponent’s half-court to see Pend of the shut-
tle trajectories, i.e., the opponent’s shot point. He opened Grid View,
which showed that most of the Pend in C1 are lower than those in C7
(Fig. 12e). Moreover, he discovered that the moving distances of the
opponent in C1 are longer than those in C7. These findings reminded
him that a shuttle trajectory that has a low Pend and forces the opponent
to move longer can cause a passive situation, in which the opponent
experiences greater difficulty in performing a high-quality return. The
expert thought that this is the reason why C1 has a higher Rwin than C7.
Considering these observations, he reached the following Conclusion:
A defensive lob with high Pstart (> 0.5m) and Phighest (> 4.5m) can
increase the opponent’s pressure and the winning rate.
Step3: Verifying the conclusions. Finally, the expert wanted to verify
whether his conclusions were held in other categories of strokes. Thus,
he selected category2 (C2) which was also a kind of defensive lob
(Fig. 12a). He used VirtualStroke to query the trajectories with a Pstart
> 0.5m and Phighest > 4.5m. ShuttleSpace retrieved the targeted strokes
immediately and presented their data in Fig. 12f. The expert found out
that these strokes in C2 also had a high Rwin and forced the opponent
to return the shuttle in a low position after long-distance movement.
These findings confirmed his conclusions. Thus, he reached this final
Conclusion: if the opponent performed a net shot, then the player
should use a defensive lob to return the shuttle at a position higher than
0.5m and ensure that its Phighest is higher than 4.5m.

Insight II: Beat Kento Momota by using a net shot to create
smash opportunities.
In this case, E4 explored the lob strokes of Kento Momota, who is
famous for his unpredictable style of play, to find his weakness. There
are 227 stroke records in this case.

Fig. 13. Insight II: The stroke data of Kento Momota. a) The overview
of Momota’s lob strokes. C2 is his most frequently used strokes but has
a low winning rate. b) When performing a C2 stroke, Momota usually
moves from the mid-right side to the front-left side of the court.

Step1: Exploring the overall stroking patterns of Momota. The
expert was familiar with Momota and had spent a long time to study
his plays. From Fig. 13a, category2 (C2) is the most frequently used
strokes of Momota. However, the expert was surprised that C2 has a

low Rwin, as Momota, a left-hand player, should have advantage at the
left side of the court. The expert thought this could be a weakness of
Momota and develop a winning strategy to beat him—if we can force
Momota to perform a C2 stroke, we will have more chances to win this
rally. Thus, he selected C2 for a detailed investigation.

Step2: Checking the trajectory key points. The expert first wanted
to identify in what situation Momota will perform a stroke of C2. Fol-
lowing Momota’s movements, the expert found out that in most cases
of C2, Momota stands (i.e., Pstart ) in the mid-right side of the court
and then moves to the front-left side of the court to stroke the shuttle
(Fig. 13b). From the previous techniques, the expert also identified that
Momota mainly perform C2 to handle spin net shot and cross-court net
shot. Next, by observing the shot points (i.e., Pstart of the Tshuttle) the
expert then noticed that Momota tends to stroke the shuttle at a position
that is low and near the net. Through Grid View (Fig. 14a, the expert
knew that the shot positions are specifically lower than 0.6m. Based on
these findings, the expert drew a Conclusion: when Momota is at the
mid-right side of the court, use spin net shot or cross-court net shot to
hit the shuttle to a position that is at the front-left side of the court and
lower than 0.6m.

Step3: Exploring how to prepare for Momota’s C2. Finally, the ex-
pert further wanted to investigate how to prepare for Momota’s strokes
of C2. Therefore he switched to the half-court of Momota’s opponent
and explored the Pend of the shuttle trajectories. The expert discov-
ered that most of these points are close to the back-right side of the
court (Fig. 14b). Moreover, according to Grid View, Momota are more
likely to lose the rally if the opponent returned the shuttle when it is
higher than 2.5m (Fig. 14c). By exploring the techniques used in the
next strokes, the expert understood that the opponents primarily return
Momota’s C2 using smash. With these evidences, the expert came to a
Conclusion: after forcing Momota to perform a stroke of C2, the player
should move back to the back-right side of the court and prepare to
smash the shuttle at a place that is higher than 2.5m.

6.3 Interview Feedback

We summarize and report the feedback gathered from the expert inter-
view session and the observations during the study.

Immersive visualization for 3D and 2D data—natural and suitable.
We were interested in the comments of experts regarding using immer-
sive visualization to present the 3D and 2D data. All the experts be-
lieved that using immersive 3D to present the trajectory data is natural
and better than using 2D visualizations on traditional desktop com-
puters. The main reason is that “if presenting the 3D data in 2D, I
will need to imagine the 3D scene in my brain [sic].” (E1) We also
discussed about the differences between 3D visualizations in immersive
environments and those on traditional desktop platforms. Three of the
experts (E1, E2, E4) preferred the immersive environment because “the
field of view is larger...[sic]” and “the stereoscopic display is made
for 3D...[sic]” By contrast, E3 preferred traditional desktop platforms
because “wearing the VR headset is easy to be tired [sic].” Considering
the combined 2D and 3D visualizations using the peripheral vision,
the experts thought that this method is appropriate and effective. E2

Fig. 14. Insight II: Detailed investigations of Momota’s C2. a) Momota usually performs a C2 stroke when the shuttle is at the front-left side of the
court and lower than 0.6m. b) Momota’s C2 hit the shuttle to the back-right side of the court. c) Returning Momota’s C2 at a place that is higher than
2.5m leads to a high winning rate.



commended that both Donut View and Grid View is “convenient to
obtain information [sic]” because they “are always within the field of
view [sic]” and “never occlude what I am looking at [sic].”

Immersive first-person view—experience, besides analysis. Over-
all, the experts appreciated the immersive experience and thought that
the system supports situation awareness to facilitate the combination of
their domain knowledge and the environmental information. E1 said
that “in the system the trajectories are not just numbers but something
real [sic].” E3 thought that compared with traditional desktop plat-
forms, the immersive environment “provides more information [sic]”,
since “...when I stand at there, I know what is happening, I know how
high I should jump, and how fast I should run to stroke the shuttle...
[sic]” E4 agreed that the immersive environment not only provides
the data for analysis but also the experience on the court. However,
the four experts also suggested that we should provide a third-person
omniscient mode by scaling down the entire scene (e.g., to 1: 10) to
obtain an overview of the data before entering the first-person view
(wherein the model size is 1:1). We consider this suggestion as an
important future improvement.

Metaphorical interaction—learn from the selection. All the experts
spoken highly of our VirtualStroke for trajectory selections. As com-
mented by E4, the interaction “is easy to learn and easy to use” and
“allows selecting the trajectories I wanted [sic].” Although we observed
that the system incorrectly inferred the selection of E2 several times, E2
still thought that “the interaction design is wonderful [sic]” and the er-
rors were acceptable because “the system and the underlying algorithm
can be improved in the future [sic].” Particularly, E4 indicated that Vir-
tualStroke can further enhance the user’s understanding of the selected
trajectories because “the stroke action recalls my muscle memory...I
can learn some characteristics of the trajectories from the selection
action itself [sic].” Nevertheless, the experts also recognized that using
VirtualStroke to select the trajectories that require high level stroke
skills, e.g., around the head smash, is occasionally difficult. Although
the targeted users of our system, i.e., domain experts, are familiar with
these stroke skills, we agree that future study should be conducted to
lower the barrier to select trajectories of high level skills.

Suggestions. The experts also identified some limitations of our system
and provided constructive suggestions. Most of the limitations proposed
by the experts during the study were related to tool maturity. For
example, the legibility of text labels and legends can be improved;
the color theme of the system should be customizable. Our system
also involves certain inherent limitations. First, the VR headset is
bulky and thus increases the physical workload. The experts generally
needed to take a break every 15 minutes during the studies. Second,
the VR environment separates the user from the real world, causing
hesitation from the user to walk around before getting used to the
environment. We observed that at the beginning of the studies, the
experts carefully attempted to move their feet to avoid falling to the
floor. They became confident to move in the simulated court when
they got used to the immersive environment. After a discussion with
the experts, we proposed to use some reference points to relate the
virtuality and reality. For example, we can put a chair in the real room
and use a similar virtual chair in the virtual court to indicate the position
of the user in relation to the real room. Third, the controllers cannot
simulate the haptic feedback of stroking a shuttle, thus requiring the
experts to spend a certain time to adapt.

7 DISCUSSION

Significance—from flat screen to immersive display. Sports gener-
ate a huge amount of data, which is mainly 3D and spatial by nature.
However, prior visual analytics systems for sports data are mainly devel-
oped on traditional 2D screens, which require the analysts to imagine
the 3D scenes in their mind. The low cost immersive devices (e.g.,
VR and AR) introduce opportunities to engage with sports data in a
direct and intuitive manner. We explore this direction and leverage
the VR devices to enable embodied data analytics. Our case studies
demonstrate that the domain experts could successfully use our system

to analyze real-world datasets and discover useful insights. However,
we consider the immersive platform as a complement to the traditional
desktop platform, rather then a substitution, despite the envisioned high
potential of immersive analytics for sports data. Future sports analytics
systems may be designed to include “immersive” and “desktop” modes.
Generalizability—from badminton to other sports. Though our sys-
tem is intended for analyzing badminton data analysis, its main design
can be generalized to other sports with certain adaptations. For exam-
ple, our system can be naturally adapted to racket sports, such as tennis,
basque pelota, and table tennis. Moreover, our two key designs, namely,
leveraging the peripheral vision to combine 2D and 3D visualizations
and the VR controllers to support metaphorical interactions, can be
shifted and adopted in other immersive analytics systems.
Potentiality—from offline VR to online AR. Currently, our system
only supports analysis in an offline manner; that is, the data is collected
beforehand. However, in practices, the coaches must decide in real-time
for coaching, and the players must occasionally obtain the feedback
immediately during training. Realizing these requirements can be
difficult for VR devices, but AR platforms can provide such kind of in-
situ interactive visual analysis. From a technical aspect, AR provides a
super-set of functions than VR, supporting virtual content embedding in
the real world. Though AR increased opportunities for sports analysis,
it also involves additional challenges than VR, such as online streaming
data analysis [45] and designing visualizations on the real-world canvas.
Furthermore, different motion capture techniques in AR may require
more complex mapping models [18, 46]. Lin et al. [17] have recently
summarized and identified the unique challenges and opportunities
of employing AR for sports analysis. We hope the obtained findings
in this study can provide a basis for further exploration towards this
direction.
Study Limitations. Similar to other studies of sports analytics [42,43],
the sample size of our case studies is small because the access to
experts is naturally limited. In addition, the trajectory data used in
the case studies is not real but reconstructed. Further evaluation is
suggested once complete tracking data is available due to the challenges
posed by the complexity of trajectory data [19]. Besides, our system
only focuses on the spatial aspect of the stroke data and excludes the
temporal dimension. We only allow the user to check the distribution
of techniques used in the previous or next stroke but disregard further
investigations of the stroke sequence. We consider this as an important
future improvement. Finally, the design of our system is not meant to
handle large-scale cases (e.g., tens of thousands of strokes or dozens of
stroke categories), which are rare in badminton analysis according to
our domain experts.

8 CONCLUSION

In this work, we propose ShuttleSpace, an immersive visual analytics
system for analyzing trajectory data in badminton from a first-person
perspective. We collaborate closely with four domain experts, who have
worked for a top national badminton team in the world over 5 years,
to identify the system requirements and propose the design goals. Our
system features Donut View and Grid View, which leverage the near-
peripheral vision to seamlessly combine 2D and 3D visualizations from
a first-person perspective, and VirtualStroke that uses the VR controller
to support natural selections of 3D trajectories. To evaluate our system,
we invite domain experts to conduct case studies on a real-world dataset
using our system. We present two useful insights discovered by the
experts and their exploration processes. We also summarize and report
our observations during the study and the feedback from the post-study
interview. The evaluation and expert feedback confirm the effectiveness
and usefulness of our system.
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