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Fig. 1. Example storyline visualizations created using PlotThread. The layouts are generated through a collaborative design between
the AI agent and designers, while the styles and visual labels are customized manually to embellish the storylines.

Abstract— Storyline visualizations are an effective means to present the evolution of plots and reveal the scenic interactions among
characters. However, the design of storyline visualizations is a difficult task as users need to balance between aesthetic goals and
narrative constraints. Despite that the optimization-based methods have been improved significantly in terms of producing aesthetic
and legible layouts, the existing (semi-) automatic methods are still limited regarding 1) efficient exploration of the storyline design
space and 2) flexible customization of storyline layouts. In this work, we propose a reinforcement learning framework to train an AI
agent that assists users in exploring the design space efficiently and generating well-optimized storylines. Based on the framework,
we introduce PlotThread, an authoring tool that integrates a set of flexible interactions to support easy customization of storyline
visualizations. To seamlessly integrate the AI agent into the authoring process, we employ a mixed-initiative approach where both the
agent and designers work on the same canvas to boost the collaborative design of storylines. We evaluate the reinforcement learning
model through qualitative and quantitative experiments and demonstrate the usage of PlotThread using a collection of use cases.
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Storyline visualizations [28, 44] have gained wide popularity in pre-
senting complex entity relationships. The ability to create visual nar-
ratives [19] makes it applicable in presenting fictions [28], analyzing
dynamic networks [25], recalling meeting content [37], and understand-
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ing software evolutions [31]. However, designing storyline visualiza-
tions has long been considered as a difficult and tedious task which
involves balancing the trade-off between narrative constraints [45] and
aesthetic goals [25]. To illustrate the evolutions of entity relationships,
two primary narrative constraints [45] should be followed:

• C1 the lines that represent characters who appear in the same
scene should be grouped.

• C2 otherwise, the grouped lines should be divided.
Inspired by graph layouts [42], it is necessary to minimize line

crossings and deviations to avoid dense visual clutter. Thus, three
aesthetic goals [44] are proposed to create legible layouts:

• G1 reducing line crossings
• G2 reducing line wiggles
• G3 reducing white space
To ease the difficulty of designing storyline visualizations, previous

studies [4, 25, 43, 44] have developed optimization-based methods that
produce storylines according to the design factors mentioned above.
However, these methods mainly focus on producing aesthetic and legi-
ble layouts without considering the whole design space of storylines.
With limited design choices, the storylines generated by the optimiza-
tion models cannot cover the diverse narrative elements compared to
the manually-created ones [45]. For example, the hand-drawn story-
lines [28, 45] adopt various layouts to indicate different plots.

To support the design of expressive storylines from the narrative
aspect, researchers [45] developed iStoryline that incorporates human
design knowledge and creativity into the optimization models. Specif-
ically, iStoryline formulates user interactions as mathematical con-
straints to control the optimization model [25] so that users can focus
on constructing storyline layouts that conform to their understand-
ings of the stories. However, the interactions proposed in iStoryline
mainly concentrate on modifying the local regions, which makes it
time-consuming and labor-intensive to customize the overall layouts.
For example, users may need to take a considerable number of actions
to refine storyline layouts, which hinders the efficient exploration of
the design space. Besides, the unpredictability of the optimization pro-
cess may give rise to unexpected results, which requires trial-and-error
practices to obtain the desired storylines.

To facilitate the easy design of storyline layouts, we envision whether
a human-AI (Artificial Intelligence) collaborative approach can be help-
ful. Specifically, we intend to employ machine learning to develop
an intelligent agent. Similar to a recommendation engine, the agent
can reduce human efforts by providing users possible suggestions of
compelling storylines that follow the aesthetic goals (G1 to G3). How-
ever, we are not aware of any prior work on designing storylines using
machine learning, which raises two major challenges:

Model Architecture Storylines depict the temporal relation-
ships [28, 44] among entities that are inherently different from the
Euclidean data (e.g., images, videos, and texts) that can be processed
by existing machine learning applications [18, 46]. Thus, it remains
unclear whether storylines can be generated using machine learning
or how to extend the existing models to deal with storylines. Recent
studies [18, 46] have adapted neural networks for graph drawings, but
they mainly focus on the topological structure of graph layouts. While
storylines and graphs pursue some common aesthetic goals (e.g., mini-
mizing crossings [10]), storylines require a higher aesthetic standard
for legible layouts. Moreover, it is also necessary to develop a novel
learning framework that takes narrative constraints into considerations
for the storyline generation problem.

Model Training Training a machine learning model requires an
appropriate loss function and a high-quality benchmark dataset [12].
In image classification, for instance, the loss function can be easily
defined as counting incorrect labels while the training data can be
obtained by labeling real-world images [15]. However, the training of
the storyline model becomes more complicated than typical machine
learning tasks. First, it is challenging to define “correct” layouts in
terms of the different narratives since designers usually have different
understandings about the stories. Thus, it is difficult to identify a unique
loss function for the storyline generation problem. Second, there are not
enough storyline visualizations available to train a machine learning
model, even though previous work [45] extended the collection of

hand-drawn storylines.
In this work, we propose a novel reinforcement learning framework

that trains an AI agent to design storylines “like” human designers. To
support the collaborative design, the agent should follow two principles:

• D1 Storylines generated by agents should resemble the ones on
which users are currently working to preserve their mental map.

• D2 The agent should share the same action space as human users
so that they can work on the same canvas collaboratively.

Thus, the goal of the AI agent is to imitate and improve users’ inter-
mediate results instead of generating storylines from scratch. To achieve
this goal, the agent should be capable of decomposing a given story-
line into a sequence of actions, understanding the state of intermediate
layouts, and have a foresightful plan for future actions. Therefore, we
employ Reinforcement Learning (RL) to solve the challenges. Specif-
ically, we define the states as the intermediate storyline layouts and
define the actions of the agent as the same interactions implemented
by iStoryline due to its success in producing diverse storylines that
conform to different narratives. We further define loss function by
maximizing the accumulative rewards that are vital for training RL
models. To obtain sufficient training data, we follow the common
practices [18, 46] that generate well-optimized storylines with diverse
visual layouts using the existing optimization approach [25].

As a proof of concept, we implement PlotThread that integrates
the agent into the authoring process of storyline visualizations. We
extend the interaction set of iStoryline to support a more flexible design
of storylines and foster close collaboration between the agent and
designers. We present the usage of PlotThread through a set of use
cases (see Fig. 1) and validate its usability via expert interviews.

The main contributions are summarized as follows:
• We propose a novel reinforcement learning framework and gen-

erate a collection of high-quality storylines to train an agent that
supports the collaborative design of storylines with designers.

• We develop PlotThread, a mixed-initiative system that facili-
tates the easy creation of expressive storyline visualizations, and
demonstrates its usage through a set of use cases.

2 RELATED WORK

We summarize critical techniques used in producing storyline visual-
izations and the state-of-the-art reinforcement learning techniques.

2.1 Storyline Visualization
Storyline visualizations have become prevalent in revealing the evo-
lution of stories [25] and presenting various narrative elements [45].
To ease the difficulties in designing storyline layouts, researchers have
proposed many (semi-) automatic approaches [4,25,43,44] that achieve
the trade-off between aesthetic goals and narrative constraints using
optimization models. Ogawa and Ma [31] firstly proposed an automatic
approach for generating storyline visualizations but their algorithm
failed to produce aesthetic layouts due to the ignorance of the heuristic
criteria. Tanahashi and Ma [44] suggested a more comprehensive set of
design considerations for storyline visualizations and proposed a layout
generation approach based on genetic algorithms. Despite the success
of producing relatively aesthetically-appealing and legible storyline
layouts, their technique is inefficient to support interactive editing of
storyline visualizations. For a better performance in both efficiency and
the overall aesthetic quality, StoryFlow [25] was developed to generate
storyline visualizations using a hybrid approach that combines discrete
and continuous optimization models. Moreover, it supports real-time
interactions (e.g., bundling, removing, straightening) for users to edit
storyline layouts. However, the automatically-generated storylines are
not comparable to the hand-drawn illustrations [45] in terms of the
expressiveness because the automatic methods cannot cover abundant
narrative elements, including plots, tones, etc.

To create more meaningful storyline visualizations that conform to
designers’ requirements, Tang et al. [45] extended the design space of
storylines that associates narrative elements with visual elements. They
further developed iStoryline that integrates a set of high-level post-
editing interactions to support the flexible customization of storyline
layouts. They developed a set of easy-to-use high-level interactions,
but it is still inefficient to explore the design space and construct the



overall layout using these fine-grained interactions. iStoryline automati-
cally translates the high-level interactions into mathematical constraints
which are further integrated into the optimization model [25] to gener-
ate storyline layouts. However, users may obtain unexpected layouts
due to the unpredictability of the optimization process, which requires
trial-and-error practices to refine the results. To improve user expe-
riences, we employ reinforcement learning to reduce users’ effort in
iteratively refining storyline visualizations.

2.2 Reinforcement Learning
Reinforcement learning refers to a system where an agent performs a
task using a set of actions in an environment that can be represented
by a set of states [16, 49]. The learning process can be depicted by
an agent predicting the “next” action based on the observed “current”
state and obtain a reward [40], and the goal of the agent is to maximize
cumulative rewards. Due to the emergent development of deep learning
techniques [12,36], deep reinforcement learning [34,47] (DRL) has bur-
geoned in fields like games [17, 27] and painting [15]. Mnih et al. [27]
proposed a deep Q-network to perform a group of challenging tasks
in classic 2D games for the Atari 2600 console [5] and achieved great
success in surpassing the previous algorithms when performing the
same tasks. To simulate a semi-realistic 3D world, Kempaka et al. [17]
introduced a new AI research platform called ViZDoom and further
employed deep Q-learning and experience replay to train competent
agents. To demonstrate how to teach machines to paint like human
painters, Huang et al. [15] employed a neural renderer in model-based
DRL to train an agent that creates fancy drawings using a small group
of strokes. Despite that reinforcement learning has become prevalent
in various fields, we are not aware of any prior works on designing
storylines. The issue of producing storylines is similar to the graph
drawing problem [18, 46] because their ultimate goal is to obtain well-
designed layouts. To achieve this goal, Wang et al. [46] employ a
graph-LSTM-based model to map graph structures to graph layouts
directly, and Kwon et al. [18] employ a deep generative model that
uses an encoder-decoder framework to map training datasets into a
latent space. However, the existing approaches are not applicable to
our work because storylines pursue higher aesthetic criteria [35] and
need to balance narrative constraints [45]. Thus, we intend to develop
a novel reinforcement learning framework that trains an AI agent to
design storylines like human users to support collaborative design.

3 PLOTTHREAD

We develop a mixed-initiative tool [39], PlotThread, to facilitate the
easy creation of storyline visualizations. We believe it is essential to
combine both human and AI intelligence so that designers can produce
creative storylines based on their design preferences and understandings
about stories while the agent can reduce labor-intensive efforts.

3.1 Design Considerations
The mixed-initiative application [21] refers to a system where auto-
mated services (e.g., agents) and users work iteratively (i.e., taking
turns) to perform tasks in the same context [20, 30]. Design principles
for mixed-initiative systems have been explored [13, 14] to achieve ef-
fective collaboration between users and computers. To guide the design
of PlotThread, we summarize two primary design considerations:

DC1. Support a smooth collaborative design workflow. The AI
agents could act as a stimulus for lateral thinking [8] to inspire co-
creativity [48]. To foster effective human-AI collaboration, it is neces-
sary to place the human at the center of visualization designs, while the
AI agent should assist, rather than replace the designers [48]. Hence,
users should be granted enough control in the decision-making stage.
One common practice is that the user takes the task-initiate [30] in
customizing an initial layout. Then, the agent proactively contributes
to the design process by improving users’ intermediate results and
providing alternative designs based on users’ input layouts. More-
over, users should be capable of further modifying and improving the
AI-generated storyline instead of merely accepting or rejecting it. To
follow this practice, it is essential to seamlessly integrate the AI agent
into the authoring process and provide a smooth co-design workflow.

Fig. 2. System workflow that supports a smooth and iterative co-design
process between users and the AI agent. Users start the design process
by customizing an initial storyline while the AI agent provides a set of
suggestive alternative designs according to the user-specified layout.

DC2. Balance fine-grained and high-level interactions. It is burden-
some for users to create storyline layouts while pursuing the aesthetic
goals (G1 to G3). For reducing human efforts, the previous study [45]
proposed high-level interactions that can invoke the optimization model
to re-layout storylines. The high-level interactions enable users to
change the overall layouts while the aesthetic quality is ensured by the
optimization model [25]. While they are easy to use, the high-level
interactions cannot fully support users’ design requirements due to
their limited flexibility. Conversely, fine-grained interactions focus on
modifying the individual lines, so they are flexible enough to support
various design requirements. However, they are also tedious and even
require professional skills. Since “users may often wish to complete
or refine an analysis provided by an agent” [13], we need to achieve a
better balance between the high-level and fine-grained interactions.

3.2 System Workflow
Our system has two actors, namely users and AI agents (see Fig. 2), to
support the collaborative design of storyline visualizations. The existing
storyline tools [25, 45] employ a solo-authoring workflow where users
are the only actor to invoke the design process while computers mainly
provide flexible design tools to ease users’ efforts. By incorporating the
AI agent, we transformed the typical solo-authoring workflow into a
divergent, collaborative design workflow where the agent can help users
to explore the design space by providing alternative layouts. Following
DC 1, users should first input a story script (see Appendix A1) into the
system and an initial layout would be automatically generated by the
storyline optimization model [45] which conforms to the three aesthetic
goals. Users can next modify the initial layout and then trigger the
AI agent to generate various storylines proactively. The AI-generated
storylines are displayed in a list so that diverse designs can inspire
users. By default, we recommend the storyline layout which looks most
similar to the user-specified one. Next, users can simply go ahead for
further refinements or smoothly switch between different AI layouts.
They can also reset to the original storyline when they are unsatisfied
with the AI layouts. Compared with the solo-authoring workflow, the
co-design workflow may invoke more novel and creative ideas because
both users and AI agents can contribute to the design of storylines [48].

3.3 Interactions
The core part of a mixed-initiative system entails user interactions
which are vital to integrate human-AI co-creativity into the authoring
process [20]. To ease the difficulty of constructing storyline layouts, we
first implement three high-level interactions inherited from a previous
study [45], namely, shifting, bending, and scaling. Second, to support
the design of expressive storylines, we also propose a set of novel
interactions. According to DC2, the new interactions should enable
users to modify the overall layouts without considerable efforts in
designing the individual lines. Moreover, they should be more flexible
than the high-level interactions since they do not invoke any storyline
optimization model.

3.3.1 High-level Interactions
We only inherit the three interactions from the previous study [45] be-
cause they can formulate user interactions as mathematical constraints
which are further integrated into the optimization model to control the
generation of storyline layouts.



Fig. 3. PlotThread is composed of a menubar for (a) loading story scripts, setting canvas, and exporting storylines; (l) a toolbar that provides a set of
easy-to-use interactions (b) to (i); The red lines indicate the interactions that change original layouts (black lines) into desired layouts (blue lines). (j)
buttons for activating and stopping the AI agent and (k) a panel for presenting AI-generated layouts; (m) a setting panel for changing the parameters
of storylines and (n) an embellishing panel for inserting icons or images into the canvas.

Shifting. The relationships among characters are visually revealed
by the spatial proximity of the corresponding lines. To define the
characters’ relationship, shifting (Fig. 3b) enables users to drag an
individual line to re-order the characters freely.

Bending. The plot evolution can be indicated by the overall layout
of the storyline visualizations. For example, users can arrange the line
groups in a certain direction to suggest that the story evolves into a
positive or negative ending. Bending (Fig. 3d) enables users to easily
bend a straight line into a curving line while the associated groups will
be transformed automatically.

Scaling. The white space can be used to present different narra-
tive elements, such as emphasizing separations between characters to
present their relationships or making room for inserted images. Scaling
(Fig. 3c) enables users to control the size of white space between lines
or groups by dragging and moving the groups of lines.

3.3.2 Extended Interactions

We propose four types of extended interactions to support the design
space [45] that describes the design of storylines at four levels, namely,
character, relationship, plot, and structure levels.

Transforming (Fig. 3g) is designed to change the overall trend of
storyline layouts, which is at the plot level. Users should first select the
scope with a circular brush, and then sketch a trajectory as the trend of
the target layout. The specified path will be segmented automatically
to guide the translation of line groups of the original storyline.

Attracting / Repelling (Fig. 3f and 3e) are designed to indicate the
closeness between the line groups, which is at the structure level. After
selecting line groups with a circular brush, users can draw a straight line
to indicate whether the selected lines should be attracted or repelled.

Relating (Fig. 3h) is designed to assist users in visually presenting
the relationships among characters using various visual elements, such
as merged or twined lines [45], which is at the relationship level. After
selecting the desired visual elements, users can choose the group of
lines they want to relate with each other.

Stylishing (Fig. 3i) is developed for users to decorate the lines with
diverse stroke styles (e.g., dash and zigzag), which is at the character
level. Users first need to select a line style and then brush the target line

which they want to embellish. Users can also highlight certain events
or characters by directly inserting graphics or icons.

3.4 Interface

Users first need to load data (Fig. 3a) that are scripts recording charac-
ters and their scenic interactions. The AI-based creator can be triggered
(Fig. 3j) at any time during the authoring process and then provides a
list of suggestive layouts based on users’ layouts. As shown in Fig. 3k,
the user-specified layout is shown at the top of the list to be compared
with alternative layout designs. To inspire lateral thinking [8], we not
only present the “final” layout that looks most similar to the user layout
but also exhibit the intermediate layouts that demonstrate how the AI
agent modifies storylines. Users can freely browse and adopt alterna-
tive layouts. We develop two panels (Fig. 3m and 3n) to support the
creative design of storylines where users can insert images, add icons,
and change model parameters.

4 PROBLEM OVERVIEW

Following the two principles (D1 and D2) of collaborative design, our
goal is to train an agent that learns how to resemble users’ intermediate
layouts using a set of user-shared interactions. Furthermore, we want
to leverage the aesthetic goals (G1 to G3) to produce well-optimized
layouts. Thus, the agent is trained to predict the high-level interac-
tions that can modify an automatically-optimized layout to resemble a
user-created layout. The high-level interactions preserve the aesthetic
quality of layouts as much as possible since we employ the optimization
model [25] to re-generate storyline layouts.

The problem is formulated as follows: given a user layout Lu
crafted by a user and an origin layout Lo generated by the optimization
model [25], the agent predicts the actions used to modify Lo according
to Lu. Like human designers, the agent is designed to predict the “next”
action by observing the “current” layout and imitating the user layout.
To avoid local minima, the agent should balance current actions and
future actions by maximizing the cumulative rewards after finishing the
given number of actions, rather than the current gain. Inspired by the
similar task of reproducing paintings [15], we employ reinforcement
learning to achieve this long-term delayed-reward design.



5 REINFORCEMENT LEARNING

In this section, we describe the entire process for designing the re-
inforcement learning framework from constructing storyline layouts,
generating training datasets, building neural networks, and learning the
storyline agent.

5.1 Storyline Layout Construction
Storyline visualizations depict how characters interact with each other.
Generally, each line represents a character, and a group of lines indicates
that the associated characters are together at a given time slot [28].
Given a story with N characters and M time slots, the path of the i-th
character Ci can be described as a sequence of points [y0

i ,y
1
i ...,y

M−1
i ].

The overall layout can be denoted as a set of characters L = {Ci}N−1
i=0

which can be further depicted as

Mpos = [y j
i ]i=0,...,N−1; j=0,...,M−1 (1)

The main difficulty in obtaining a storyline layout is the calculation
of its position matrix Mpos, which pursues the maximization of the
aesthetic metrics (G1 to G3) while satisfying the primary narrative
constraints (C1 and C2). Given that the performance of the existing sto-
ryline algorithms [25,43,45] has been considerably improved, we adopt
iStoryline [45] as the renderer to calculate the layout. First, iStoryline
is implemented on the basis of StoryFlow to achieve a real-time gener-
ation for a large collection of storylines [25], which is vital for training
an agent that needs to reproduce storylines for over thousands of hun-
dreds of times. Second, iStoryline extends the optimization model of
StoryFlow to integrate a more diverse set of narrative constraints, which
is crucial for the agent to fully explore the overall design space and
customize storyline layouts without losing too much aesthetic quality.

In PlotThread, we inherit three high-level interactions, namely, shift-
ing, bending, scaling, from iStoryline, which insert three novel types
of narrative constraints to the three optimization stages, namely order-
ing, alignment, and compaction [45]. Next, we introduce how these
high-level interactions are incorporated into the optimization model to
enable an efficient customization of storyline layouts.

Shifting determines the vertical order of characters using a con-
strained crossing minimization algorithm [11], which generates or-
dering constraints using a set of order pairs [o j

i ,o
j
i′
]i,i′<N; j<M where

o j
i indicates the order of the i-th character at the j-th time slot. The

constraint suggests that the i-th character should be “ahead” of the i
′
-th

character at the j-th time slot. After solving the ordering algorithm [11],
the order of characters during the whole timeline can be obtained using

Morder = [o j
i ]i=0,...,N−1; j=0,...,M−1 (2)

Bending determines the straightness of characters along the time-
line via the dynamic programming algorithm [25], which generates
alignment constraints using a set of indicators [e j

i ]i<N; j<M . The vari-
able e j

i is set to 1 when the i-th character are aligned at both the j-th
and its previous time slots. By default, the indicators at the first time
slot are set to 1 so that {e0

i = 1}i=0,...,N−1. After solving the dynamic
programming [25], the alignment situations can be obtained using

Malign = [e j
i ]i=0,...,N−1; j=0,...,M−1 (3)

Scaling determines the white space among characters through the
least-square method [25], which generates compaction constraints using
a set of inequalities {d1 < |y j

i − y j
i−1|< d2}i<N; j<M where d1 and d2

are numerical values to indicate the lower and upper bounds of the
white space among the i-th and its last characters. After obtaining
the results (Eq. 2 and 3) of the two previous optimization stages, the
position matrix (Eq. 1) can be obtained by solving a constrained convex
optimization problem which is detailed in Appendix A2.

5.2 Training Data Collection
Training neural networks require a large number of high-quality
datasets [18, 24]. Although Tang et al. [45] have extended the col-
lection of hand-drawn storyline illustrations, the size of the dataset is

too small for a machine learning task. Moreover, the manual produc-
tion of training data is a labor-intensive task which requires considerate
time and human resource. Inspired by the recent studies on graph
drawings [18,46], we generate a set of well-optimized storyline layouts
using the optimization model [25]. Although automatically-generated
storylines are not comparable to the hand-drawn illustrations in terms
of both aesthetic quality and expressiveness [45], our goal is to train
an agent that can imitate users’ layouts instead of generating storylines
that are comparable or superior to hand-drawn ones.

To obtain considerate and diverse datasets, researchers have em-
ployed a grid search that applies different combinations of random
parameters on the graph models [18, 46]. Following this common prac-
tice, we use iStoryline [45] to generate the training datasets due to its
ability to produce aesthetic storyline layouts in a short time. Notice
that iStoryline only receives two parameters, namely inner gap and
outer gap, to determine the white space between individual lines and
the groups of lines, respectively. Thus, merely modifying the model
parameters cannot produce sufficient storylines with diverse layouts.
We apply random searching in generating different narrative constraints
described in Sec. 5.1, which are further integrated into the optimization
model [25] to control the diversity of storyline layouts. Mathematically,
the training data is a set of storyline pairs < Lo,Lu > where Lo is the
origin layout generated by the optimization model directly, and Lu is
the “user” layout simulated by inserting randomly-selected narrative
constraints into the optimization model [25]. However, the simulated
“user” layout Lu may not be visually “better” than the origin layout Lo
because more narrative constraints are used to restrict the optimization
of storylines. Since the goal of the AI agent is to provide a list of
possible layouts according to users’ layouts, the key of our RL model
is to teach the agent to refine origin layouts and imitate users’ layouts
instead of producing extremely-optimized storylines.

Following the design considerations mentioned above, we first ex-
tract story scripts that describe characters and their scenic interactions
from the hand-drawn illustrations1. Each story script records a set of
time slots that indicate who are together at a given time. To ensure the
diversity of training data, we evenly produce three groups of narrative
constraints, namely, ordering, alignment, and compaction constraints
with random parameters. We then randomly select K constraints from
the three groups to obtain different layouts for the same story script.
The selected constraints are the ground truth that the agent needs to
learn and predict when modifying origin layouts Lo to imitate user
layouts Lu. The variable K indicates how many steps the agent can
have to reproduce user layouts. In our case, we set K = 15 because
the agent should complete the authoring task within reasonable time
to avoid losing users’ attention. We obtain 20 story scripts from the
published gallery and generate 1000 storyline layouts for each story. In
total, we generate 20000 layouts to train the AI agent.

5.3 Model Architecture

Given a user layout Lu and an origin layout Lo, the agent aims to
predict a sequence of actions {ak}K−1

k=0 where rendering ak on L(k)

leads to L(k+1). The initial layout L(0) can be obtained from the origin
layout Lo. The final layout L(K−1) can be obtained by rendering the
consecutive actions, which should be visually similar to Lu as much as
possible. This design issue can be formulated as a Markov Decision
Process [15] with a state space S, an action space A, a transition
function T (st ,au) and a reward function R(st ,au) [34].

5.3.1 State and Transition Function

The state space describes all possible layouts that an agent can
obtain after rendering actions. Mathematically, we define a state
su = (L(k),Lu,k) where L(k) and Lu refer to the layouts that can be
represented by the position matrix Mpos and the variable k indicates
the k-th step for the agent. We further define the transition function
sk+1 = T (sk,ak) that describes the transition process between states sk
and sk+1, which is implemented by applying action ak on state sk.

1https://istoryline.github.io/gallery/

https://istoryline.github.io/gallery/
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Fig. 4. Neural network architecture for the AI agent. FC refers to fully-
connected layer, and ReLU represents an activation function. Three
neural networks are employed to separately predict the three high-level
interactions. A greedy function is used to obtain final actions and values.

5.3.2 Action
To support the collaborative design, we define the action space as the
high-level interactions (discussed in Sec. 5.1) for three reasons. First,
it is necessary for the agent to share the same action space with users
so that they can work concurrently to design storyline visualizations.
Second, the high-level interactions are implemented on the basis of the
constrained optimization model [25, 45] so that the agent can produce
well-optimized layouts in terms of the aesthetic goals. Third, it is
sufficient to modify storyline layouts with these interactions so that we
do not include the other interactions proposed in PlotThread. Formally,
an action ak of the storyline agent is a set of parameters that define a
narrative constraint (e.g., ordering, alignment, compaction constraint).
The behaviors of the agent can be further described using a policy
function P : S→ A that maps states to deterministic actions [40]. After
predicting action ak at step k, the state can evolve using the transition
function sk+1 = T (ak,sk), which runs for K steps [47].

5.3.3 Reward
Reward is a stimulus for the agent to improve its prediction ability [27].
Our goal is to guide the agent to resemble the layout on which users
are working and produce alternative layouts to inspire co-creativity.
We formulate the reward as the similarity between the user layout Lu
and the layout L(k) produced by the agent at step k. To quantify the
layout similarity, we follow the well-established framework [25] that
measures storyline layouts in three aspects:

Ordering Feature The first step to obtain an aesthetic storyline
layout is to determine the vertical order of characters. The ordering
variable o j

i (L) indicates the ranking position of the i-th character at the
j-th time slot for the layout L. Based on that, we formulate the ordering
similarity between the user layout Lu and the layout L(k) at step k as

S(k)order =Comp(MLu
order,M

L(k)

order) (4)

Alignment Feature After obtaining the orders of characters, the
second step is to determine the alignment situation of characters along
the whole timeline. Given a layout L, the alignment variable e j

i (L)
indicates whether the i-th character is aligned at the j-th time slot and
the previous slot. Following the same mathematical notations, we
quantify the alignment similarity as

S(k)align =Comp(MLu
align,M

L(k)

align) (5)

Position Feature The last step for generating storyline layouts is
to calculate the exact positions of characters by minimizing the white
space of the overall layout. The position variable e j

i (L) suggests that
the position of the i-th character at the j-th time slot in the layout L.
We calculate the position difference of the two layouts using

D(k)
pos = Dist(MLu

pos,M
L(k)

pos ) (6)

where Comp(·) is a counting function that self increment one if the
corresponding values of two matrices are the same and Dist(·) is a
distance function that calculates the difference between two matrices
using Euclidean metric. We further employ sigmoid function S(·)

Optimazation Model Value(Sk+1)

Rewardk

Critica
c

b

Fig. 5. Learning algorithm for the AI agent: (a) use the optimization
model [25] to produce storylines; (b) measure the similarity between
user-specified and “current” layouts to obtain the reward; (c) calculate
the critic value to predict the “next” action.

to normalize the three visual features. Based on that, we define the
similarity between the user layout Lu and the k-th step layout L(k) using
a linear scheme S(k) = ω1S(S(k)order)+ω2S(S(k)align)+ω3S(D(k)

pos). The
reward at k-th step can be obtained using r(sk,ak) = S(k)− S(k+ 1).
To make the final result resemble the user layout, we maximize the
cumulative rewards in the whole episode using a discounted scheme
that Rk = ∑

K
k′=k

γk
′
r(sk′ ,ak′ ) with a discounting factor γ ∈ [0,1]. The

default parameters [ω1,ω2,ω3,γ] are set to 1.

5.3.4 Network Architecture

Due to the high variability and complexity of narratives, we first nor-
malize the input layout into a H×H matrix which can be regarded as a
one-channel image (By default, we set H = 100). To extract the visual
features from storyline layouts, we employ the network structure that
is similar to ResNet-18 [12]. Given that storyline layouts are less com-
plicated than real-world images, we simplify the network structure by
removing all convolution layers to preserve visual information. In our
experiments, we discover that the fully-connected layers are capable
of predicting actions for generating storyline layouts. To ease the diffi-
culty of exploring the mix-type action space and stabilize learning, we
separate the network architecture into three parallel components [17]
that aim at exploring the different parts of the action space. Specifically,
every component is designed only to explore the action space of one of
the high-level interactions (see Fig. 4). In the end, we employ a greedy
function to calculate the reward and determine the action.

Rk =
K

∑
k′=k

γ
k
′
max
a

k′
r(sk′ ,ak′ ) (7)

5.4 Learning

We first introduce the standard setting for reinforcement learning [41]
where an agent interacts with an environment over a certain number of
time steps, and then describe how to train the agent using the state-of-
the-art framework, namely, asynchronous advantage actor-critic [26].

In a typical actor-critic model [32], researchers usually employ two
neural networks to present actor and critic, respectively (see Fig. 5).
An actor observes the environment by receiving an state sk and then
predict an action ak at time step k, while a critic obtains the state
sk to predict cumulative reward in the future. In general, the policy
function π(at |st ,θπ ) characterizes the actor’s behaviors which can be
formulated as a mathematical probability function. Since an agent aims
to maximize the expected cumulative reward [16], the value of state sk
under policy π can be defined as V π (s,θV ) = E(Rk|sk = s) that is the
expected return for following policy π from state s. Hence, the problem
of training a storyline agent is to obtain the parameters (θπ ,θV ) of the
neural networks for the policy function π and the value function V . The
updates on the model parameters [6] can be written as



Fig. 6. Qualitative experiments: (a) the initially-optimized layouts generated by the optimization model [25]. (b) the user layouts modified by the
interactions shown in (a). (c) the AI-generated layouts that resemble the user layouts but with improved aesthetic quality. The intermediate layouts at
the k-th step (k = 1,5,15) are also presented to indicate how the AI agent reproduces the user layouts. The four cases are Jurassic Park, WuKong,
Moon and Sixpence, Justice League (from left to right).

∆θπ ← ∆θπ +∇θπ
logπ(ak|sk;θπ )(Rk−V (sk;θV ))

∆θV ← ∆θV +
∂ (Rk−V (sk;θV ))

2

∂θV

where ∆θπ and ∆θV are the updates applied to the model parameter
θπ and θV , respectively.

However, training an agent in a complicated high-dimensional
mix-type action space is difficult due to the unstable learning prob-
lem and the requirements of large computational resources [26, 50].
To overcome these issues, Minih et al. [26] propose a novel asyn-
chronous framework that enhances the existing RL algorithms, such
as Q-learning [22], and actor-critic methods [32]. The key idea is to
use asynchronous actor-learners that run in parallel to explore different
parts of the environment [23, 26]. Instead of using different machines,
the actor-learners are running on the different processes to remove the
communication costs and improve training efficiency. Moreover, the re-
searchers observe that it is more likely for the multiple actor-learners to
be uncorrelated than a single agent when applying the overall changes
to the model parameters. The updates applied to the parallel agent [26]
will be updated on the main agent to combine the asynchronous changes
of the model parameters on different processes.

6 EXPERIMENTS

Implementation. We employ a client-server architecture to develop
PlotThread. The web interface is implemented using TypeScript [3] and
ECharts.js [9] while the server side is implemented using Python and the
popular machine learning library PyTorch [2]. To support the flexible
customization of storyline visualizations, we adopt the well-established
graphic library, namely Paper.js [1]. We also develop a storyline layout
optimizer which is implemented using C# to modularize PlotThread.

To validate the effectiveness of the reinforcement learning (RL)
model, we conduct both quantitative and qualitative experiments on
four datasets. The input stories are visualized using the optimization
model [25] in Fig. 6a. We first show that the agent has leveraged both

aesthetic and expressiveness in producing various types of storyline
layouts. To simulate the real authoring process, we create four user
layouts, including incline-, stair-, and wave-layout (see Fig. 6b), using
the extended interactions that reshape the overall layouts without in-
voking optimization models. Apparently, the user layouts are twisted
and do not satisfy the aesthetic goals, but they are regarded as more
expressive in terms of the diverse visual forms. We then invoke the
RL model to predict actions that can modify the initially-optimized
layouts (Fig. 6a) to resemble the user layouts (Fig. 6b). The results
(Fig. 6c) indicate that our RL model can successfully capture the visual
features from the user layouts and produce more expressive layouts
than the initially-optimized ones. Despite that the AI-generated layouts
seem to have more edge crossings than the initially-optimized layouts,
they still preserve a satisfactory aesthetic quality compared to the user
layouts. Thus, we believe our agent achieves a better trade-off between
expressiveness and aesthetics even though it increases expressiveness
at the cost of some aesthetic quality.

We also conducted quantitative experiments on a desktop with a
CPU (3.7GHz) to evaluate the search power and time performance of
the AI agent by comparing it with a baseline method. We repeated
the experiments 4 times and calculated average values to avoid the
influences of CPU scheduling. Since there are no prior RL models on
designing storyline visualizations, we implemented a greedy algorithm
that randomly selects a group of actions and then adopts the one that
can improve the reward. We compare the AI agent with the greedy
algorithm by measuring their convergence rates and time when per-
forming the same tasks. As shown in Fig. 8a, the baseline method
can improve the rewards dramatically in the short term but they are
trapped in the local optimums finally. While the AI agent seems to have
difficulties in searching the design space in the beginning, it finally
achieves better performances than the baseline method in the long term.
The results indicate that our RL model has successfully learned how to
“think” when designing storylines and can sacrifice short-term rewards
to achieve long-term planning. Moreover, both the AI agent and the
baseline method can converge to final layouts within 12 seconds (see
Fig. 8b). In PlotThread, we set the default steps of the agent to 15
which ensures a satisfactory response time for users’ interactions.



Fig. 7. This case illustrates the authoring process of the storyline visualization (Justice League) using PlotThread. The designer first customizes an
initial layout through (a) Shfiting, (b) Repelling, (c) and (d) Transforming (Dashed ellipses indicate the transforming regions and solid paths represent
the transforming shapes). The AI agent is then (e) triggered to produce suggestive storylines and (f) the desired one is selected. S/He further
improves the AI-generated layout using high-level interactions, namely Scaling and Bending (g). The relationships among characters are revealed
using (h) Relating, and the layout is (i) embellished to enrich the narration.

Fig. 8. Quantitative experiments: (a) x-axis represents the number of
steps, and y-axis indicates the loss that is inverse of the cumulative
rewards. The solid and dashed lines indicate the performance of the RL
model and the baseline method, respectively. (b) y-axis indicates the
running time of the RL model (blue) and the baseline method (Orange).

7 USE CASES

In this section, we illustrate the usage of PlotThread. A storyline
visualization called Justice League is created to describe the authoring
process of customizing the layout with the assistance of the AI agent.
This use case indicates how people and the agent can work together to
achieves users’ design requirements. Following the same procedure,
we create more use cases (see Fig. 1) to demonstrate that PlotThread
can be used to design various stories and produce diverse layouts.

As a proof of concept, we simplify the story of Justice League [38]
and only depict events that are vital for the evolution of the narrative.
The story depicts how superheroes stand together and establish Justice
League to fight against Steppenwolf, which can be roughly divided
into three stages. First, Batman and Wonder Woman decided to recruit
team members. They recruited The Flash, Cyborg, and Aquaman to
save the world from the catastrophic threat caused by Steppenwolf.
The second stage begins with the fight against Steppenwolf’s invasion
and the rescue act for Superman. But Superman attacked the other
superheroes who try to rescue him since Steppenwolf had twisted his
mind. After he recovered, he decided to join Justice League. The third
stage was the climax where the superheroes struggled with the fight
against Steppenwolf, and finally won with the return of Superman.

As shown in Fig. 7, we illustrate how to create the storyline visualiza-
tion step by step using PlotThread. We use “George” who refers to the
user to describe the authoring process. George first loads the story data
which is a formatted document for the storyline renderer [45], and he
obtains an initial storyline. Then, he uses Shifting to change the order
of characters, and separate Steppenwolf and the members of Justice

League (Fig. 7a). Based on his understanding of the story, he wants to
transform the layout of the first stage into an “up-step” shape, where
Batman and Wonder Woman tried to increase their team by recruiting
new superheroes. He uses Transforming, selects the superheroes in-
volved, and draws an ascending step-like line to obtain the initial step
layout (Fig. 7c). Next, he moves on to transform the shape of other
stages, for example, in the climax stage, he draws a parabolic curve
(Fig. 7d) to illustrate how Justice League beats Steppenwolf. George
thinks the appearance is not legible or aesthetically appealing enough,
so he seeks for AI assistance by triggering the AI creator. After AI gives
the results, he quickly switches between different layouts and finds one
(Fig. 7f) which has few crossings and deviations but preserving the
narrative trends specified by him.

George continues to clarify the relationship between the groups of
characters in a more coarse-grained way. Using Repelling, he empha-
sizes the part when Superman leaves the other superheroes, and when
he reunites (Fig. 7b). He triggers the AI creator when he wants to
improve the appearance and gain some inspirations about the story-
line design (Fig. 7e). After clarifying the trend of the story as well
as the general narrative structure, George starts to work on detailed
refinements using Bending and Scaling (Fig. 7g). For example, he
emphasizes the closeness of Justice League at the end of the whole
story using Scaling. After completing the layout, George uses Relating
to embellish the plots and make them more expressive (Fig. 7h). For
example, he uses twined lines to illustrate the intense fights. Finally,
he embellishes the picture by adding icons, changing line colors and
stroke weight, as well as adding text annotations (Fig. 7i).

8 USER FEEDBACK

To evaluate the effectiveness and usability of PlotThread, we conducted
semi-structured interviews with three experts. The first expert (EA) was
an artist who graduated from a national academy of art. She evaluated
the output storylines crafted by PlotThread (see Fig. 1) and compared
them with the storylines generated by the optimization model [25]
and human artists [45]. The second expert (ED) was a professional
UI/UX designer who worked for an international software company.
She helped to test the usability of PlotThread because she had rich
experiences in using various commercial design tools (e.g., Adobe
AI/PS). The third expert (EV) was a senior researcher who studied
visualization and visual analytics [29] for eight years. He evaluated
the system development of PlotThread and discussed the potential
applications for storyline visualizations. The interview includes a 30-
min demonstration of PlotThread and a 30-min discussion.



EA mainly evaluated the storylines generated by different agents
from the aesthetic and narrative aspects. We provided three kinds of
storylines: the AI-assisted storylines created by PlotThread (see Fig. 1),
the extremely-optimized storylines generated by the optimization model
without human involvement [25], and the hand-drawn storylines created
by artists [45]. She thoroughly compared the visual designs of the
different storylines and surprisingly found that the extremely-optimized
storylines are hardest to read although they have fewest crossings
and deviations. She inferred that “viewers intend to pay attention to
line groups which are hard to be distinguished in extremely-optimized
storylines because they are too compact.” This observation validates the
effectiveness of PlotThread which intends to better balance the aesthetic
goals and the narrative constraints by sacrificing some aesthetic quality
to enrich the narration. On the one hand, the AI agent is inherently
driven by the optimization model so that it can produce well-optimized
results. On the other hand, the agent resembles the input layouts which
can be flexibly customized to indicate more narrative details.

ED mainly focused on the system design, including the human-AI
collaborative workflow, the design of interactions, as well as the user
interface. She was impressed by the interaction and interface design
and commented that “the interactions are intuitive and the interface
is easy to follow,” but she also pointed out that users may need some
training when they first use the system. To lower the learning cost,
we will further improve the system with a user-friendly built-in user
guide. When asked about the experience of human-AI collaboration,
she commented that “users may doubt whether the AI agent can really
understand their intentions, so they may be very reluctant to seek AI
for help.” This concern reveals a common trust issue widely existing in
“black box” models. One possible solution is to provide an animation
that demonstrates the evolution of layouts and how the AI agent modi-
fies storylines. She also suggested that it would be helpful if users do
not need to prepare story scripts because “it will challenge general users
who do not have story scripts.” Additionally, she provided a poten-
tial application of PlotThread that “it may be promising for preschool
teachers to tell stories visually using PlotThread.”

EV commented on the performance of the reinforcement learning
algorithm and the applicability of PlotThread. He confirmed the ef-
fectiveness and expressiveness of the storylines (see Fig. 1) created
by PlotThread. He mentioned that “the diverse visual forms of the
storylines can arouse viewer’s emotions, which I never expect from the
optimization-based results.” Due to the various visual elements pro-
posed in the design space [7], we believe that we can further improve
PlotThread and expand its applications. He suggested that “it can be
helpful if the AI agent can guide users when they have no clues on how
to start the design of storylines.” This comment involves the trade-off
between AI-driven and AI-guide systems where users or agents start
the design process, respectively. To balance the two sides adequately,
we plan to extend our RL framework to enable the agent to generate
storylines from the input stories directly.

9 DISCUSSION

We discuss the implications and limitations of PlotThread as follows:
Implications. Our work has several important implications. First,

we develop PlotThread that facilitates the easy creation of storyline
visualizations. Despite that existing tools [25, 45] have incorporated
human creativity into the optimization models, they require users to
have a deep understanding of the automatic generation process of
storyline visualizations. Thus, non-expert users are usually limited
in fully expressing their ideas and design talents when designing the
layouts of storylines. Due to the assistance of the AI agent, PlotThread
enables users to design storyline layouts flexibly without considering
the aesthetic goals (G1 to G3). The AI agent can resemble the user-
specified layouts while preserving the aesthetic quality as much as
possible. Thus, we believe PlotThread can serve numerous amateur
users, which reflects the idea of “visualization for the mass.”

Second, to the best of our knowledge, we are the first to apply rein-
forcement learning to the design of storyline visualizations. Despite
recent studies indicate that machine learning techniques can be success-
fully applied to the design of data visualizations (e.g., graphs [18, 46]
and charts [33]), it is still unknown whether storylines can be produced

using machine learning approaches. To answer this issue, we employ
reinforcement learning that formulates the design of storyline visual-
izations as a long-term delayed reward problem. The agent is trained
to learn how designers typically “refine” initial storyline layouts to
provide users possible suggestions of effective storyline layouts that
follow the aesthetic goals. Our RL framework can inspire promising
research frontiers in the field of visualization design. For example,
researchers could first decompose a complicated design task into a set
of design actions and then employ reinforcement learning to predict
possible combinations of actions to construct data visualizations.

Third, we propose a mixed-initiative approach that incorporates pre-
dictive models and user feedbacks into interactive applications where
users initiate and exploit the design task while computational agents ex-
plore the design space. Compared with a typical computer-assisted tool
(e.g., iStoryline [45]), PlotThread intends to achieve a better trade-off
between human creative work and automation by providing intelligence-
level (not tool-level) assistance. Despite that the optimization-based
approaches [25, 43, 44] have been improved significantly, we argue
that it is necessary to integrate human intelligence into the design of
storylines. Sitting in opposition to a perspective of pure automation,
PlotThread provides a successful example where computational agents
and people are seamlessly integrated to work on a shared problem,
which can inspire the development of future visualization tools.

Limitations. Our work has several limitations. First, while there
are various design tools to support the design of expressive storylines,
PlotThread could be further improved to increase the artistry of the
storyline visualizations. For instance, more diverse sketch styles could
be employed to enrich the narration of storylines. Thus, we plan to
develop more design tools to support the creative design of storylines.
Second, even though the time efficiency of the AI agent is acceptable
during the authoring process (see Fig. 8), it could be further improved
to support more tightly collaborative designs. As a proof of concept,
we have implemented PlotThread on a personal laptop, and we plan to
improve the time performance of the AI agent via GPUs and parallel
programming. Third, it is labor-intensive for users to prepare story
scripts [45] that are necessary input for the storyline renderer [45]. To
alleviate users’ burden, we also plan to enable users to create story-
line visualizations from scratch and investigate how to improve the
collaborative design workflow progressively.

10 CONCLUSION

In this research, we develop PlotThread, a mixed-initiative authoring
tool that seamlessly integrates computational agents and people to
facilitate the easy design of storyline visualizations. The agent is
designed to help users explore the design space [45] efficiently by
providing a set of suggestive layouts, which can also inspire lateral
thinking [8]. To develop such an intelligent agent, we formulate the
design of storyline layouts as a reinforcement learning (RL) problem
where the agent is trained to “refine” storyline layouts based on user-
shared interactions. Moreover, we propose a novel framework and
generate a collection of well-optimized storylines to address the two
major challenges, namely model architecture and model training, raised
by applying RL on designing storylines. We evaluate the effectiveness
of our framework using qualitative and quantitative experiments and
demonstrate the usage of PlotThread through a group of use cases. As
future work, we plan to improve the time efficiency of the agent by
employing parallel computing and extend the design tools of PlotThread
to support more creative designs.
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