
HomeFinder Revisited: Finding Ideal Homes with
Reachability-Centric Multi-Criteria Decision Making

Di Weng1, Heming Zhu1, Jie Bao2, Yu Zheng2, Yingcai Wu1∗

1State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
2Urban Computing Group, Microsoft Research, Beijing, China

{dweng,zhmwoot}@zju.edu.cn,{jiebao,yuzheng}@microsoft.com,ycwu@zju.edu.cn

ABSTRACT
Finding an ideal home is a difficult and laborious process.
One of the most crucial factors in this process is the reach-
ability between the home location and the concerned points
of interest, such as places of work and recreational facilities.
However, such importance is unrecognized in the extant real
estate systems. By characterizing user requirements and ana-
lytical tasks in the context of finding ideal homes, we designed
ReACH, a novel visual analytics system that assists people in
finding, evaluating, and choosing a home based on multiple
criteria, including reachability. In addition, we developed an
improved data-driven model for approximating reachability
with massive taxi trajectories. This model enables users to in-
teractively integrate their knowledge and preferences to make
judicious and informed decisions. We show the improvements
in our model by comparing the theoretical complexities with
the prior study and demonstrate the usability and effectiveness
of the proposed system with task-based evaluation.

ACM Classification Keywords
H.5.2. User Interfaces: Graphical user interfaces (GUI)

Author Keywords
Reachability; urban visual analytics; location selection.

INTRODUCTION
For many years, finding an ideal home has been a crucial but
laborious task [38]. Home location is one of the foremost
factors involved in such decisions [14, 37]. The quality of
the home location generally depends on the reachability (i.e.
accessibility) between the location and points of interest [11,
19, 22], such as places of work, schools, amusement parks,
bus stops, and shopping malls. When finding an ideal home, a
family with children may establish the following requirements
based on their daily routines: (1) good elementary school that
is a 15-minute drive away from home, (2) the father can drive
his children to school and arrive at work within 40 minutes
during the morning rush hour, and (3) the mother can fetch
*Yingcai Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173821

her child from school on the way home from her work within
30 minutes during the evening rush hour. Even with modern
retrieval and interaction technologies, browsing through a list
of filtered and ranked home candidates to find a competent
one remains the most common yet time-consuming method to
complete such task.

Prior studies have extensively analyzed the location selection
problems in the context of selecting retail stores [20], bill-
boards [25], and ambulance stations [24]. Various location
selection models were proposed, such as maximum coverage
models [23, 25] and learning-to-rank model [15]. Nonetheless,
choosing an optimal home location based on reachability re-
mains unexplored and challenging. Williamson and Shneider-
man [38] proposed a rudimentary dynamic queries interface,
HomeFinder, allowing users to query real estate data with mul-
tiple criteria, including the physical distance between homes
and places of work. Despite years of development, the modern
online systems for finding ideal homes, such as Hubzu [2] and
Zillow [50], exclude reachability queries or merely provide a
limited set of reachability filtering options based on the physi-
cal distance. However, the distance cannot accurately estimate
the reachability of locations in many cases because the traffic
conditions may vary significantly over time along with several
factors (e.g., weather conditions and traffic control).

The limited applicability of physical distance motivates us to
develop a data-driven method that integrates accurate reach-
ability estimations into the workflow of finding an ideal
home. This method computes reachability from massive
taxi trajectory data, which are relatively easy to acquire [42,
43] and effectively reveal underlying traffic patterns [9, 47].
Given a travel duration, the evidence-based reachability be-
tween two locations is measured as the number of trajectory-
reachable days divided by the number of days available in the
dataset [39]. Hence, each home location can be associated
with a probabilistic reachable region of the specified duration,
in which the probability of a point represents the reachability
between the location and the point. However, developing such
method poses three major challenges:

Efficiency of reachability computation: The reachability of
locations cannot be easily computed from the sheer volume
of taxi trajectories with billions of GPS coordinates because
reachability is inferred from continuous taxi trajectories. To
avoid iterating over the huge trajectory dataset, Wu et al. [39]
proposed a tree-based spatiotemporal index to accelerate the
computation of reachability. However, this method is inca-
pable of handling real-time queries and does not scale well

https://doi.org/10.1145/3173574.3173821

with the size of the dataset. Interactions and visualizations
demand a new efficient algorithm for computing reachability.

Representations of daily routines: Filtering home candi-
dates based on daily routines requires concise descriptions of
these routines. We define daily routines as a series of reachabil-
ity constraints. A reachability constraint can be quite complex.
It may involve multiple chained activities (e.g., go to place
B, spend some time, and then go to place C), multiple candi-
date locations (e.g., prefer any school in a certain area), and
constrained reachable probability (e.g., being late for work is
unacceptable). An effective method for organizing and visual-
izing these constraints, such that users can easily specify and
refine the constraints progressively, has yet to be proposed.

Integration of individual preferences: People may have dif-
ferent requirements with respect to their preferences. The di-
versity in opinions requires good flexibility in expressing pref-
erences, thereby denying a completely automated recommen-
dation algorithm. Thus, an interactive method is demanded to
assist users in specifying their requirements, thereby enabling
them to filter, compare, and rank numerous home candidates
involving multiple criteria.

Our study characterizes user requirements and analytical tasks
in the context of finding an ideal home, and addresses the
aforementioned challenges from three aspects. First, we de-
sign a novel reachability model based on a graph-based index
and a query algorithm to efficiently estimate the reachability
of locations with massive trajectories. Second, we introduce
a novel timeline view to support the orchestration, organiza-
tion, and visualization of complex reachability constraints as
a representation of users’ daily routines. Third, we design and
develop a visual analytics system called Reachability-Aided
Contemporary HomeFinder (ReACH) to assist users in inter-
actively querying, filtering, and evaluating home candidates to
identify their ideal homes. To our knowledge, the system is the
first visual analytics system that integrates data-driven compu-
tation and user-centric visualization to find ideal homes. The
major contributions of this study are summarized as follows.

1. We characterize user requirements and analytical tasks in
the context of finding ideal homes.

2. We propose a real-time data-driven computation model with
a graph-based index to handle interactive queries for proba-
bilistic reachable regions.

3. We design a new timeline view for orchestrating, organizing,
and visualizing reachability constraints. Based on the view,
we develop ReACH, a novel visual analytics system, to
assist users in finding ideal homes based on multiple criteria.

RELATED WORK
This section presents studies related to our research in four cat-
egories, namely, reachability query, location selection, urban
visualization, and multi-criteria decision-making.

Reachability query is a classic graph query that determines
the reachability of one vertex to another under certain con-
straints. It has been extensively studied in static [10, 35, 6, 36]
and dynamic graphs [40, 49]. Road network is a special type
of graphs associated with dynamic data, such as trajectories.
Wu et al. [39] proposed a tree-based method for estimating
the reachability between roads on the road network based on

massive taxi trajectories. However, this method cannot handle
interactive queries generated by visual analytics. Therefore,
we develop an efficient graph-based method to efficiently ap-
proximate reachability and answer queries in real time.

Location selection has become a crucial problem in urban
planning as massive heterogeneous data are being collected
in cities. Prior studies have proposed many models and algo-
rithms to address these problems, such as the location selection
of retail stores [20], ambulance stations [24], and charging sta-
tions [23]. However, most models and algorithms are designed
to work automatically with several fixed criteria, which tend
to generate unsatisfactory results, given the complexity of ur-
ban environments. Effort has been exerted to integrate human
expertise by visual analytics in making an informed location
decision. Liu et al. [25] leveraged the maximum coverage
model and adopted state-of-the-art visualization methods to
assist advertising experts in evaluating and choosing billboard
locations. Nonetheless, our study is distinguished from prior
studies by focusing on addressing the location selection prob-
lem with the reachability of candidate locations.

Urban visualization has become one of the most popular
research topics in the visualization community. Most 2D ur-
ban visualization techniques are categorized into point-, line-,
and region-based techniques [48]. Point-based visualization
techniques directly place points on spatial contexts [13, 21].
Line-based techniques visualize trajectory data on road maps
or in traffic networks [1, 17, 45]. Region-based techniques
present aggregated information in pre-segmented regions [46,
28, 31]. A few visual analytics systems related to reachabil-
ity have been developed based on one or more categories of
these techniques. BoundarySeer [41] visualizes the changes
in the boundaries of reachable regions and assists experts in
analyzing the reachability in the urban context by depicting
the geometric properties of regions. Zeng et al. [44] designed
a system for visualizing the mobility of passengers in public
transportation systems by focusing on the temporal patterns of
the passenger reachability. Nonetheless, these methods cannot
be directly applied to the problem of home location selection,
which involves spatial and abstract properties.

Multi-criteria decision making (MCDM) aims to make de-
cisions based on multiple criteria. Involving users in a MCDM
process contributes to an informed decision [4, 5, 7]. Visual
ranking is one of the most common techniques for user-centric
decision making. This technique ranks and visualizes can-
didates to assist users in making decisions transparently and
efficiently. Seo and Shneiderman [32] proposed a rank-by-
feature approach consisting of a ranked list and scores with
ordered bars. RankExplorer [33] visualized data trends using
stacked graphs and encodes the variation in rankings using
color bars and glyphs. Other studies have attempted to ex-
tend visual ranking to multiple criteria. Behrisch et al. [3]
demonstrated ranking with multiple attributes by using small
multiples and a radial node-link representation. LineUp [16]
employed stacked bar charts to compare different objects and
explain how the weights of multiple attributes affect the final
ranking. WeightLifter [30] further analyzed the space of at-
tribute weights and enables users to investigate the sensitivity
of the weights. Accordingly, we use prior studies as inspiration
to integrate visual ranking into our system, thereby assisting
users in ranking candidate homes based on multiple criteria.

D Reachability constraint

C Activity

A Reachability

Departure time Arrival time

origins destination

FixedReachable

Reachable

Unreachable

Unreachable

B Probabilistic reachable region

a. Destination-Oriented

b. Origin-Oriented

Fixed

Figure 1. Four major reachability concepts. (A) Reachability describes
the accessibility between two location sets. (B) A probabilistic reachable
region comprises all locations with the reachability above a threshold
that computes from fixed locations (origins (b) or destinations (a)) in an
activity. (C) An activity defines a reachability query with spatial and tem-
poral parameters. (D) A reachability constraint comprises one or more
consecutive activities and represents users’ daily routines.

DATA AND TASK ABSTRACTION
This section presents the background of our study, describes
the dataset, and discusses user requirements and analytical
tasks that guide the design of our visual analytics system.

Background and Concepts
ReACH is a visual analytics system designed for people who
desire to buy or rent houses, apartments, or condominiums.
We refer to these people as the users of our system. When
finding an ideal home, users need choose from a list of avail-
able homes. These homes and their locations are referred to
as candidates and candidate locations, respectively. We char-
acterize the concepts involved in location selection of homes
based on reachability as follows.
• Reachability (Figure 1A) describes a set of locations’ acces-

sibility to another set of locations on the road network in a
given duration. We measure the accessibility empirically as
the ratio of days when locations in two sets are connected
by some trajectories under the time constraint.
• A probabilistic reachable region (Figure 1B) comprises all

locations with the reachability, which is measured as the
ratio of the reachable days from a set of given origins within
a travel duration, higher than a specified threshold. The
threshold is also referred to as the reachability threshold
(i.e., the reliability of reachability computation results).
• An activity (Figure 1C) defines a reachability query, which

comprises a set of origins, estimated time spent at the ori-
gins, departure time, reachability threshold, arrival time,
and a set of destinations. An activity is satisfied if a user
can depart from any origin and arrive at any destination
under the given conditions. Either the origins or the desti-
nations are fixed: by computing the reachability from the
locations at the fixed end (e.g., places of work), the unreach-
able locations at the non-fixed end (e.g., candidate locations)
are excluded in the result, as illustrated in Figure 1B. In this
way, we prune the search space of satisfactory candidates by
computing incrementally from a small number of locations
because they must be reachable.
• A reachability constraint (Figure 1D) comprises one or

more consecutive activities: the destinations of an activity
are the origins of the following activity. Either the origins or

the destinations of a reachability constraints are fixed, such
that the system generates a set of candidates by comput-
ing non-fixed locations satisfying each activity sequentially
from the fixed end of the constraint. Thereafter, the inter-
section of the sets generated from all constraints will match
users’ requirements according to their daily routines.

Apart from the above reachability concepts, the intrinsic prop-
erties of candidates (e.g., price, floor size, and number of
bedrooms) are crucial factors and should be noted in the pro-
cess of finding an ideal home. However, the importance of an
intrinsic property may vary across different groups of users
because of the substantial diversity in their preferences.

Data Description
Four types of data are used in our study. These data were
collected in the same city to ensure consistency.
• Road network data comprise a directed graph that describes

a large city, where the vertices represent road intersections
and the edges represent roads. The graph has 183,749 ver-
tices and 244,233 edges.
• Taxi trajectory data comprise 1,783,249,500 snapshots of

taxi status collected from 8,816 taxis over a two-month
period. These snapshots were reported every 30 seconds
on average by the sensors installed on vehicles. Each taxi
snapshot contains a plate number, GPS coordinates, the
current speed, a current direction, and a timestamp.
• POI data include 243,713 points of interest in the city, such

as restaurants and shopping malls. Each point is tagged
with GPS coordinates and a predefined category.
• Candidate data include 1,927 candidates that were avail-

able for sale in the city in December 2016. Each entry
comprises several spatial and intrinsic properties, such as
GPS coordinates, floor size, and price.

Task Analysis
In the design process of our system, we organized three brain-
storming sessions with 17 people who have experience in
buying or renting apartments. In addition, we identified their
requirements in finding an ideal candidate. Two participants
were faculty members, two other participants had several years
of expertise in urban planning, and the rest were undergrad-
uate and graduate students. Based on their comments, we
summarized the collected user requirements into two major
categories, namely, R.1, which concerns the spatial proper-
ties of the candidates (e.g., location and neighborhood); and
R.2, which is relevant to the intrinsic properties of the candi-
dates (e.g., price and floor size). We carefully analyzed these
requirements and compiled a list of tasks as follows.

T.1 Orchestrate reachability constraints interactively. All
participants agreed that an interactive method should be
implemented to assist users in formulating and organizing
reachability constraints that closely represent their daily
routines (R.1). The proposed method must support conve-
niently specifying the spatial (e.g., origins and destinations)
and temporal (e.g., time spent and travel duration) parame-
ters of an activity in constraint. The system should compute
the reachability for each activity and generate a list of can-
didates that match the specified constraints.

T.2 Explore computed reachability visually. Participants
need an effective way to explore the reachability computed

R1T1 R3T2

R4T3R2T3

Build
Graph Index

Query Processor
Trajectory Data Trajectory Graph

Candidate Data

Process & Cluster

Mongo DB

Data Storage
POI Data

Routing Machine

Timeline View

7:30 8:00 8:30

Map View Ranking View

candidate

Wishlist View

observe �ilter & rank save

comparere�ine

candidate

Figure 2. The backend of ReACH comprises three major components. Query Processor handles interactive queries for reachability; Data Storage
delivers the processed data from the database on demand; Routing Machine generates the fastest routes among locations. The frontend of ReACH
comprises four views, which provide a novel integrated solution for finding ideal homes based on multiple criteria.

in each activity, such that they can further refine the pa-
rameters or rearrange daily routines. However, participants
indicated that the concept of the reachability and the prob-
abilistic reachable region could be complex for average
users. Thus, the proposed visual presentation of reachabil-
ity should be concrete, accurate, and readily interpretable.

T.3 Refine reachability constraints iteratively. Participants
requested that they would like to refine constraints by com-
paring the candidates with those generated from alternative
configurations (R.1). For example, a user may wonder how
the candidates change if he drives his children to schools in
a region instead of those in another region. Furthermore, an
automated candidate filtering algorithm based on the given
reachability constraints may produce unsatisfactory results
(e.g., producing considerably few or many candidates). The
system should enable users to control the results of the
algorithm. This capability can be realized by the manipula-
tion of the parameters of the activities, such that users can
evaluate the results and refine constraints iteratively.

T.4 Filter and rank candidates effectively. Different partici-
pants have different ideal homes. Some are price-sensitive,
while some are reachability-sensitive. Individual prefer-
ences should be accurately reflected in the system (R.2).
Particularly, participants complained that the filtering fea-
tures of the extant online systems were “too limited”, and
“only few options are available”. These features are also suf-
fered from the all-or-nothing phenomenon [38], where users
perform considerably broad or restrictive queries without
familiarizing with the statistics of candidates beforehand.
As such, the system is required to provide insights into the
multidimensional candidate data as users filter and rank
candidates progressively (R.2).

SYSTEM ARCHITECTURE
ReACH is a web-based application written in JavaScript. Fig-
ure 2 illustrates the system architecture. Users interact with
the system with the frontend of ReACH running in the browser,
while the backend stores data and answers reachability queries.

The frontend of ReACH comprises four views, namely, time-
line, map, ranking, and wishlist. Users can create and refine
reachability constraints in the timeline view (T.1, T.3), explore
reachability in the map view (T.2), filter and rank candidates
in the ranking view (T.4), and save ideal homes for later com-
parisons in the wishlist view (T.4). The backend mainly serves
three purposes, namely, (1) storing candidates and other types
of data, (2) processing reachability queries with our model,
and (3) handling spatial queries with MongoDB [29] and Open
Source Routing Machine [27].

MODEL
This section presents a novel graph-based index and a query
algorithm for efficient reachability computation.

Background and the Prior Method
The road network of a city can be viewed as a directed graph
G = (V,E), where V = {n1,n2, ...} is the set of road inter-
sections and E = {r1,r2, ...} is the set of roads. The GPS
coordinates in the taxi trajectories are map-matched [26] to
the corresponding roads. Each map-matched taxi trajectory
Ti comprises a set of consecutive records {R1,R2, ...}. Each
record R j = (t j, t j+1,r j) indicates that the vehicle was on road
r j ∈ E during the time span [t j, t j+1).

We briefly restate the computational approach introduced by
Wu et al. [39]. The number of days covered by the trajectory
dataset is denoted by D. Given two locations A and B, we
map-match these locations to the nearest road segments rA and
rB. By iterating over the dataset with indices, the number of
days when a trajectory passes through rA and then rB during
a specified duration is counted and denoted by d. Thus, the
reachable probability from location A to B is estimated as d/D.
However, such approach cannot directly support the analytical
tasks because of the following limitations:

Computation is slow and space inefficient. Computing a
20-minute reachable region with 1-month taxi trajectory data
requires approximately 20 seconds on a cluster of 3 machines.

Reachability is computed only for partial roads. The prior
method guarantees efficiency by excluding roads from the com-
putation if the reachability of these roads is below a threshold.
However, as requested by T.2, all roads must be iterated over
to generate an overview of reachability.

Only individual trajectories are considered. By connecting
multiple trajectories, the system can infer the reachability
between A and C from one trajectory between A and B and
another between B and C. This way, trajectories are consumed
efficiently, thereby reducing space overhead.

Graph-based Method
We designed a graph-based method to circumvent the afore-
mentioned limitations. Instead of scanning trajectories directly,
we compress them into a trajectory graph based on the assump-
tion that numerous trajectories share partial routes with each
other. These identical routes can be compressed to remove
redundancy and accelerate the search process.

Building a Trajectory Graph
We split a day (1440 minutes) into a set of k-minute time slots,
M = {m1,m2, ...}, to conform with the discretization step of
the prior approach. Given a road network G = (V,E), we
define a trajectory graph on the trajectory set T : GT = (M×
E,ET), the nodes of which are indexed by the combinations of
a time slot mi and a road r j. The goal of the building process
is to obtain the edge set ET of the trajectory graph.

Constructing an uncompressed set of edges: First, we
scan trajectories T1,T2, ... to construct an edge set E ′T =
{(mi,ru;m j,rv), ...} that contains the edges connecting from
the node (mi,ru) to the node (m j,rv).

• For each record R j = (t j, t j+1,r j) ∈ Ti, the time slots m j
and m j+1 corresponded by t j and t j+1 are identified. If
m j , m j+1, then an edge (m j,r j;m j+1,r j) is added.
• For each consecutive pair of records {R j = (t j, t j+1,r j),

R j+1 = (t j+1, t j+2,r j+1)} ⊆ Ti, the time slot m j+1 corre-
sponded by t j+1 is identified. If r j , r j+1, then an edge
(m j+1,r j;m j+1,r j+1) is added.

Compressing the set of edges: We apply the following
compression procedure to obtain ET = {(mi,ru;m j,rv;S), ...},
where S is a set of days numbered from 1. For each edge
e = (mi,ru;m j,rv) in the uncompressed edge set E ′T , day d is
identified when the corresponding trajectory was recorded. If
an edge e′ ∈ ET exists, of which the origin and destination
nodes are the same as those of e, then we have e′.S = e′.S∪d.
Otherwise, we add an edge (mi,ru;m j,rv;{d}). For efficiency,
the set S is implemented with bit sets.

Figure 3 illustrates the construction of a trajectory graph. The
red and blue trajectories were recorded on days 2 and 3, re-
spectively,and each trajectory comprises three records. The
second and third records in two trajectories can be compressed,
thereby producing the edges in green. Bit sets on the edges
represent the days when the trajectories were recorded.

Computing Reachability with the Graph
Given a starting road and a set of time slots representing travel
duration, the query algorithm determines a set of reachable
days for every road by executing depth-first search on the
trajectory graph. Algorithm 1 illustrates a detailed implemen-
tation of the querying algorithm.

m1,m1,r1

m1,m2,r3

m1,r1
m1,r2

m1,r3

m2,r3

m2,r4

0100

0110

0110

0010

T1(d=3)

T2(d=2)

m2,m2,r4

m2,m2,r4

m1,m2,r3

m1,m1,r2

Figure 3. A trajectory graph with 5 nodes constructed from 2 trajecto-
ries (blue on day 3 and red on day 2), where mi represents a time slot
and ri represents a road. Compressed edges are drawn in green.

Algorithm 1 Query reachable days in a trajectory graph
INPUT: A trajectory graph GT , starting road r0, time slots M′ =
{m1,m2, ...,mt}, mapping from every road to an average time cost C,
the length of a time slot k.
OUTPUT: Mapping from every road to a set of reachable days P.

1: procedure SEARCH(node, daysReachable, timeSpent)
2: if |daysReachable|= 0 or timeSpent > k then return
3: (timeSlot, road)← node
4: P[road]← P[road]∪daysReachable
5: for each edge (node;nextNode;daysValid) ∈ ET do
6: (nextTimeSlot,nextRoad)← nextNode
7: if timeSlot = nextTimeSlot then
8: SEARCH(nextNode,

daysReachable∩daysValid, timeSpent+C[road])
9: else

10: SEARCH(nextNode, daysReachable∩daysValid, 0)
11: Q←{(m,r) ∈M×E|m ∈M′,r = r0}
12: for each node ∈ Q do SEARCH(node, N, 0)

First, the algorithm locates all starting nodes in the trajectory
graph that match the given travel duration (cf. line 11) and
performs depth-first search from these nodes (cf. line 12).
If the stopping criteria were not met (cf. line 2), then the
algorithm updates the reachable days for roads (cf. line 4)
and continues searching with neighbors (cf. lines 7-10). The
reachability for each road is obtained by simply dividing the
number of reachable days by the total number of days.

VISUAL DESIGN
To support the aforementioned tasks, we designed four views
for ReACH, namely, timeline, map, ranking, and wishlist. Fig-
ure 4 illustrates the interface of the system. These views pro-
vide a novel integrated solution for finding ideal homes based
on multiple criteria. First, the timeline view visually depicts
users’ daily routines as node-link diagrams, where users can
conveniently orchestrate constraints with simple interactions
(T.1) and refine activities by modifying parameters or adding
spatial filters (T.3). Then, our model computes the reacha-
bility between origins and destinations in realtime, and the
result is revealed in the map view with heatmap and predicted
routes (T.2). Next, the ranking view assists users in filtering
and ranking candidates with multiple attributes interactively
and progressively (T.4). Finally, users can save interesting
candidates in the wishlist view for further comparison.

Timeline View
We design a novel timeline view (Figure 4B) for orchestrating,
organizing, and visualizing reachability constraints as a repre-
sentation of users’ daily routines. The proposed timeline view
comprises three components, namely, a time axis, user-defined
reachability constraints, and an activity editor.

Filtering Enabled

BA F

K

L

D

E

G

M

N

Time Spent

Location
type

Percentage of
reachable locations

Reachability
threshold

Handle

C
H

I

J

Figure 4. The interface of ReACH. (A-E) Timeline view enables the orchestration, organization, and visualization of reachability constraints based on
users’ daily routines with novel visual designs. (F-J) Map view depicts the locations of candidate houses and the result of reachability computation.
(K-M) Ranking view assists users in filtering, comparing, and ranking candidates. (N) Wishlist view keeps desired candidates for further comparison.

Time axis: The vertical time axis (Figure 4A) serves as a
minimap of reachability constraints. It shows each constraint
vertically as black thin bars, the position and length of which
depict the duration occupied by the corresponding constraint.
The brushed part of the time axis is displayed on the right.

Reachability constraints: Constraints (Figure 4B) are laid
out vertically as node-link diagrams in the timeline view. Only
one constraint is active for editing at a moment. Each node,
identified by its color in a constraint, represents a set of loca-
tions, which can be selected from 10 location presets or picked
from the map. We design the node as follows (Figure 4C):
(a) inside the node, the glyph indicates the type of locations
if a preset is selected; (b) a donut chart surrounding the node
encodes the percentage of locations in this node that satisfy
the constraint; (c) around the node, a handle is designated to
assist users in specifying the time spent on these locations
intuitively; and (d) the radius of the node is adaptive, such
that the node will shrink and hide annotations to avoid over-
lapping while keeping the structure of the constraint visible as
an overview, if the space is limited. Links between the nodes
represent activities. The length of the dark bar on each link
shows the reachability threshold of an activity. Moreover, the
departure and arrival time of an activity can be adjusted simply
by moving nodes in the vertical direction.

Activity editor: The editor (Figure 4D) enables users to view
and modify parameters of an activity, including the traveling
method, reachability threshold, and locations. The traveling
method can be toggled with buttons at the top of the editor.
In addition to driving, we also estimate travel durations for
walking and public transportation to support flexible com-
binations of traveling methods. Reachability thresholds are
encoded with reachability charts (Figure 4E). To concretize
concepts as per T.2, we draw the reachability chart to show
the current reachability threshold and visualize how the num-
ber of reachable locations changes with the threshold. The

x and y axes of the chart encode the reachability threshold
and the number of reachable non-fixed locations, respectively.
With the reachability chart, users can visually configure the
reachability threshold and investigate patterns, such as traffic
congestions, that may affect their decisions. Locations can be
specified either with the presets extracted from POI data or by
interacting with the map view (Figure 4F).

Design alternatives: Graph (Figure 5A) and tree (Figure 5B)
representations illustrate the constraints as graphs and trees, re-
spectively. Unlike the linear representation introduced above,
these alternatives offer branching in the constraints, such that
multiple activities can be simultaneously satisfied. In Fig-
ure 5A and B, for example, either activity A2 or A3 can occur
after A1, and both of them will be followed by activity A5.
However, despite the flexibility in orchestrating complex con-
straints, users found a branching timeline counter-intuitive
and difficult to manipulate shared activities. Thus, based on
their feedback, we design the timeline view with the linear
representation.

A1

A2

A3

A4

A5

A6

A5
A5
A4

A6

A2

A3
A1

地图数据 ©2017 GS(2011)6020

8:3
0

8:3
0

15min
15min

8:45

9:00

8:45A

B

C

Figure 5. Design alternatives for the timeline and map views. (A) A
graph representation of constraints. (B) A tree representation of con-
straints. (C) A map view encapsulated in a circular time axis.

Map View
To assist users in making decisions in the spatial context effec-
tively, we adopt a map-centered exploratory approach [18] by
placing a map (Figure 4F) in the map view with two additional
layers, namely, candidate and constraint layers.

Candidate layer: Candidates are represented by the green
circles on the layer. When users click on a circle, the system
will compute the fastest route that starts with the correspond-
ing candidate and passes each location as specified by the
constraint. The route is then drawn on the map as a node-link
diagram (Figure 4G), where the colors of intermediate nodes
are the same with those of constraint nodes.

Constraint layer: This layer becomes visible when users
view an activity in the activity editor. The origins and des-
tinations of the activity are plotted as circles on the layer
in respective colors. To visualize the reachability from the
fixed locations of the activity, the constraint layer provides a
heatmap based on kernel density estimation (Figure 4H). The
color of the heatmap varies from transparent to the color of
the fixed locations of the activity. The deeper the color is, the
more likely users can reach from these locations.

Design alternatives: We explored two alternative methods
for specifying the temporal and spatial parameters of activ-
ities. One alternative is to directly place the timeline view
onto map or use embedding visualization techniques, such
as RouteZooming [34]. However, this approach renders the
spatial context and reachability constraints incomprehensi-
ble, because the map would be occluded or deformed by the
scattered locations of constraints. The other alternative is to en-
capsulate the map view in a circular timeline based on a clock
metaphor (Figure 5C). In addition, we estimated the bound-
aries of reachable regions based on concave hull algorithms
and visualized them with contour lines. However, despite the
convenience of setting spatial and temporal parameters in a
single view without moving back and forth, users complained
that such layout was unfamiliar to them, and the contour lines
that crossed the water and terrain caused confusion. Conse-
quently, we reverted to the simplified design with separate
views for improved usability.

Ranking View
The ranking view (Figure 4K) shows all candidates as a list.
Inspired by LineUp [16], the multidimensional candidate data
are organized in a table. For every candidate, we estimate the
total travel durations for given daily routines and list them in
the table. Users can rank the candidates based on an attribute
or several aggregated attributes with the separate weights con-
trolled by the width of columns.

Interactive filtering: We improved the range filtering of can-
didates compared with the simple sliders in HomeFinder [38].
A bar chart is embedded into the header of each column with a
slider at the bottom (Figure 4M). Bars in the bar chart evenly
split the value range of an attribute, and the height of each bar
encodes the number of candidates that match the correspond-
ing value range. Users can either click on the bars or adjust the
slider to select a value range for an attribute. Thereafter, the
table will be updated to show the candidates that satisfy the
selected value range. Additionally, all bar charts will change
dynamically according to the remaining candidates, while
leaving the original bars in gray for comparisons. This tool

enables the easy and interactive creation of filters based on the
insights revealed by the distribution of candidates.

Wishlist View
Users may explore and rank candidates with different daily rou-
tines, activity parameters, or settings of the attribute weights.
In the trial of the first prototype, the participants requested a
list for storing the desired candidates they found while using
the system. Their feedback prompted us to add the wishlist
view (Figure 4N) for storing candidates.

Interactions
Several interaction techniques have been implemented in the
system to enable users to orchestrate constraints and analyze
candidates across multiple views.

Timeline: Users can navigate to any duration by selecting and
brushing on the time axis. New constraints can be created with
the “Add Constraint” button, and users can add a new node by
clicking on the links in the node-link diagram and adjust its
precise time by dragging it vertically. Moreover, a non-linear
constraint can be established by adding multiple linear ones,
and the filtered sets of houses are eventually intersected.

Spatial filtering: The spatial filtering tool in the timeline view
enables users to draw polygons on the map to exclude the lo-
cations that are not covered by the drawings. The timeline and
ranking views will be updated to reflect the changes on loca-
tions accordingly. In addition, every location can be manually
deleted in the popup on the map.

Highlighting: Users can select and highlight a candidate in
the map, ranking, and wishlist views. When a candidate is
selected, the map view pans to the candidate’s position and
shows a popup with its name and action buttons, such as
removing the candidate. The ranking view highlights the
corresponding row and move the candidate to the top of the
table. The wishlist view shows a home card for the candidate,
where the candidate can be added into the wishlist.

EVALUATION
This section shows the improvements in our model compared
with the prior method and demonstrates the effectiveness and
usability of ReACH with two usage scenarios and a task-based
evaluation. Our system is deployed on a workstation with
two Intel Xeon E5-2620 CPUs and 128 GB of memory, and
interactive performance is achieved. Users can access the
system through web browsers on standard PCs and engage in
the experiments conducted with the data described.

Complexity Analysis of the Model
This section theoretically compares two methods in terms of
space and time complexities. To simplify the problem, we
fixate the total number of days D to predict the complexities
of the algorithm against the data complexities of the trajectory
dataset and city structure. Without loss of generality, we
assume each vehicle has only one continuous trajectory and
each trajectory passes β (T) roads on average in a time slot.

Space Complexity
Prior method: The ST-Index, which indexes the trajectory
data, comprises three layers. The first two layers contain the
spatial indexes that are nested in a temporal index. Given
that each road has β (T)/|E| trajectories on average, the space

consumption of the ST-Index is computed as |M|+ |M||E|+
β (T)D|M||T |. The space consumption of another index (i.e.,
Con-Index) is disregarded, because computing the reachability
for all roads does not require this index. Thus, the overall
space complexity is

Θ(β (T)|M||T |+ |M||E|).
In practice, the ST-Index can easily consume hundreds of
gigabytes. Hence, maintaining such index in memory will be
substantially difficult if the complexities of the data scale up.

Graph-based method: Assuming that the average trajec-
tory compression rate is γ(T) = |ET |/|E ′T |, we estimate in
two folds that the number of edges in a trajectory graph is
γ(T)β (T)D|M||T |+ γ(T)D(|M| − 1)|T |. Thus, we predict
the space complexity of the trajectory graph as follows:

Θ(γ(T)β (T)|M||T |).
Compression rate γ(T) can significantly affect the size of a
trajectory graph, but we can only obtain the value empirically.
In our case, approximately 11.4 GB is required to store the two-
month trajectory data in a graph (β (T)≈ 7.81, γ(T)≈ 0.106).
In the worst case scenario, the trajectory graph would become
completely connected. Therefore, the upper bound of the space
complexity is O(|M||E|2). Graph compression techniques[12]
can be applied to reduce the space complexity because the
graph is often sparse.

Time Complexity
Prior method: An exhaustive search is performed in the ST-
Index. If we compare the trajectories passing each road with
those passing r0 in every time slot (Θ(n) each comparison if
roads were sorted), the overall time complexity is

Θ(β (T)|M|2|T |).

Graph-based method: In the worst case scenario, the algo-
rithm must traverse all edges in the graph and the estimated
number of edges is γ(T)β (T)D|M||T |+ γ(T)D(|M|−1)|T |).
We use the time complexity of the depth-first search as basis
to predict the complexity of our method as follows:

Θ(|M||E|+ γ(T)β (T)|M||T |).
Although the growth of γ(T) cannot be determined, we argue
that the graph-based method has the following advantages.
• The stopping criteria (cf. line 2 of Algorithm 1) and opti-

mizations allow the algorithm to skip most of the edges.
• The algorithm computes without disk reads because the

generated trajectory graph can fit into the memory.
• In practice, 20-minute reachable regions can be generated

in 3-4 seconds on a workstation in contrast to approximately
20 seconds demonstrated in the prior study with a cluster.

Usage Scenarios
We demonstrate the effectiveness and usability of ReACH with
two usage scenarios by following John, a software engineer
who has recently acquired a new job in a city. He is looking
for an apartment to move in with his family.

Orchestration of Constraints
To avoid the classic all-or-nothing phenomenon [38] where
users attempt broad or restrictive queries before knowing the
content, attribute filters in the ranking view can serve as a
preliminary tool for exploring candidate data. Therefore, John
toggles attribute filters from the ranking view (Figure 4M). He

A

B

C

D

Figure 6. Heatmaps illustrating the reachability within 15 minutes (A)
and 30 minutes (B). Green nodes represent candidates before being fil-
tered by the ranking view. (C) High reachability along Qiushi Express-
way circled in the dashed line. (D) The number of candidates drops fast
as the reachability threshold increases.

immediately notices the unbalanced, long-tailed distribution of
price ranging from 238 thousand to nearly 33 million dollars.
Since John cannot afford such luxurious apartments, he adjusts
the upper bound of price to 5 million. In addition to the price,
floor size is also one of the major concerns for a two-kid
family, so John rises the lower bound of the floor size to 100
square meters. After filtering, roughly 600 candidates remain
in the ranking view.

John then proceeds to the timeline view. He decides to leave
home at 8:00 in the morning and adds another 8:15 node
with his place of work picked from the map view. However,
only 16 candidates match his requirements after being filtered
by the ranking view because the generated reachable region
(Figure 6A) is smaller than expected. By browsing the ranking
list, John is unable to find ideal candidates, because apart from
old apartments, two recently-built ones (year built ≥ 2010)
are not cost-effective: these two apartments are expensive
with small floor size. Hence, John changes his mind and
decides to leave home 15 minutes earlier. This time, a larger
reachable region (Figure 6B) is generated with 77 candidates
after being filtered. With the area chart in the activity editor,
John increases the reachability threshold of the activity, such
that he maintains the number of candidates to choose from
while reducing the probability of being late for work.

Comparison with Reachability and Ranking
Planning to drop off his children at school on his way to
work, John adds a node at 8:00 and chooses a school location
preset in the activity editor. With the result of preliminary
surveys prior to using our system, John has found two equally-
preferred schools, School #27 and School #325. Since either
school is suitable for his children, he would like to compare
candidates based on the school choice he makes.

First, John locates School #27 in the map view, which is near
Qiushi Elevated. A spatial filter is applied, such that the school

No. Task Description A. Task(s)

E1 Leave home at 7 a.m. and arrive at place A at 8 on
weekdays. How many candidates are left?

T.1

E2 Observe the heatmap. Is it possible to reach place
A in time from candidates B, C, or D? Which one
has the highest reachable probability?

T.2

E3 Increase the reachability threshold. Which one in
B, C, and D has the highest reachable probability?

T.2, T.3

E4 Add a intermediate node for schools. Compare the
results of 3 regions of schools X, Y, and Z. Which
one leads to the largest number of candidates?

T.3

E5 Find in the result of each region the top candidate
with price lower than 5 million and with 2 bed-
rooms ranked by floor size. Which region leads to
the best candidate?

T.4

Table 1. Evaluation tasks and questions.

node in the timeline view only consists of School #27. From
the reachability heatmap (Figure 6C), John discovers that high
reachable regions are mainly distributed along Qiushi Express-
way (circled with the dashed line), which extends to the north
of the city. However, he notices that the number of distant
candidates reduces quickly as he increases the reachability
threshold between homes and the school (Figure 6D), indi-
cating high possibility of traffic congestions along Qiushi Ex-
pressway. Thus, he lowers the threshold for more choices and
obtains an ideal candidate, Qiantangmingdu, by ranking the
candidates with 50% price and 50% floor size. This candidate
is saved to the wishlist for further comparison.

Then, John locates School #325 and applies another spatial
filter. The heatmap reveals the excellent reachability of this
school (Figure 4H), which is mainly contributed by two roads,
Shangtang Elevated (Figure 4I) and Zhonghe Elevated (Fig-
ure 4J), circled with the dashed lines. Moreover, the number
of candidates reachable from School #325 (Figure 4E) is con-
siderably more stable than that reachable from School #27
(Figure 6D). By browsing the ranking view with the same
weight settings, John discovers that Shengdugongyu is the
best choice if he sends his children to School #325. To make
the comparison, he adds Qiantangmingdu back from the wish-
list. The former best choice is clearly outperformed by the
current one (Figure 4L): despite the slightly cheaper price,
Qiantangmingdu is smaller than its competitor by more than
20 square meters. Therefore, John decides to contact the owner
of Shengdugongyu for more details about the apartment.

Task-based User Study
We conducted a task-based user study to evaluate the proposed
system and find potential usability issues.

Participants and Data
We recruited 14 subjects (7 males and 7 females) from differ-
ent departments, including Agronomy (4), Computer Science
(3), Medicine (2), Electronic Engineering (1), Journalism (1),
Mathematics (1), Oceanography (1), and Civil Engineering
(1). These subjects were identified by S1-S14, respectively.
None of them was involved in the development of the proposed
system. The study was conducted based on candidate data that
comprise the apartments for sale during December 2016.

Evaluation Procedure and Tasks
The study was conducted on an individual basis. First, the
subjects were presented with an introduction to the functions

No. Question

P1 Is the interface of ReACH intuitive and easy to use?
P2 Is the workflow of ReACH easy to learn?
P3 Does ReACH correctly reflect the needs in finding ideal homes?
P4 Is the generated reachable region reasonable?
P5 Does the timeline view help you filter candidates with reachability

based on daily routines effectively?
P6 Is the timeline view intuitive and easy to use?
P7 Does the map view help you compare the reachability clearly?
P8 Does the ranking view help you filter and rank candidates based

on requirements effectively?
P9 Is the ranking view intuitive and easy to use?
P10 Does the wishlist view help you in the comparisons of candidates?
P11 Is the wishlist view intuitive and easy to use?

Table 2. Post-study questionnaire.

and views of the proposed system. Then, the subjects prac-
ticed and gained familiarity with the system for 5 minutes.
Afterward, they performed a series of evaluation tasks and an-
swered the questions listed in Table 1. These evaluation tasks
were designed to correspond with the analytical tasks that we
previously summarized. Lastly, the subjects were asked to fill
in a post-study questionnaire designed using a 7-point Likert
scale, where they rated their experience and the quality of our
system. Questions in the questionnaire are listed in Table 2.
In addition, their feedback was collected and analyzed after
the evaluation.

Experiment Result

0
0.2
0.4
0.6
0.8

1

E1 E2 E3 E4 E5

Passing Rates

0
1.75

3.5
5.25

7

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Post-Study Questionnaire

A

B

Figure 7. Analysis of passing rates (A) of evaluation tasks (Table 1) and
user ratings (B) of post-study questionnaire (Table 2).

Figure 7 shows the result of the evaluation, including the
passing rates of the evaluation tasks and mean values of post-
study ratings with 95% confidence intervals.

Passing rates: Each session of the task-based user study
lasted 15-20 minutes, and we considered a subject passed
a task if he/she answered the question specified in each task
correctly. The passing rates of the evaluation tasks (Figure 7A)
are satisfactory: the subjects achieved 4.79 points out of 5
on average. The effectiveness of our system in depicting the
reachability is proved by the high passing rates of E1-E3. Only
subject S10 failed E2, because she could not distinguish the
difference in the densities of colors on the heatmap. Another
subject S9 was unfamiliar with regions X, Y, and Z, thereby
giving incorrect answers for E4 and E5. Nonetheless, most
of the subjects completed the evaluation tasks smoothly and
efficiently with our system.

Post-study ratings: Generally, the subjects gave high ratings
for all questions and confirmed the effectiveness and usability
of our system (Figure 7B). The subjects agreed that the criteria
involved in this study were critical in the context of finding
an ideal home (P3). They also approved the accuracy of our
model with a high rating for P4, based on their commuting
experience. Furthermore, they liked the design of the time-
line view and rated high scores for its effectiveness (P5) and
usability (P6). However, the average ratings for overall intu-
itiveness (P1) and approachability (P2) were the lowest among
all, mainly because: (a) the approachability of our system
slightly suffered from the novelty and flexibility of reacha-
bility concepts, compared to the simple yet straightforward
interfaces of the extant online systems; and (b) some subjects
concerned that manual guidance might be required before us-
ing the system. This can be addressed by integrating visual
guidance techniques [8] to help average users quickly famil-
iarize with the visualizations. We also noticed that the rating
for the map view was lower than those of other views, which
was contributed by the difficulty in comparing the reachability
of multiple candidates by observing the density of colors. The
rating implied that adjusting the reachability threshold incre-
mentally coubld be more suitable for reachability comparisons
than observing heatmaps at a finer scale.

Users’ feedback: The subjects were interviewed after the
user study. They appreciated the novelty of our system. “It’s
a really nice idea to query candidates based on people’s daily
routines.” commented subjects S4 and S7. They also con-
veyed a positive attitude toward the usability of our system.
Subject S1 told us, “It is convenient to specify and view daily
routines with the timeline view.” The subjects were also inter-
ested in the implementation of the system and gave affirmative
comments, such as “Interactions are very smooth and fluid.”

We also received valuable feedback regarding improvements
of the system. Subjects S1 and S9 would like a search box
in the map view to assist them in locating roads or points of
interest. Subject S1 also suggested that attribute filters should
allow users to specify exact value ranges with text boxes. We
improved our system accordingly.

DISCUSSION
Lessons learned: We summarize several lessons learned from
the design process of ReACH. First, a good balance between
flexibility and simplicity plays an important role in encourag-
ing the masses to use the proposed system. Second, carefully
designed animated transitions and interactions among multi-
ple coordinated views enable users to immediately familiarize
themselves with the system. Third, the familiarity and intu-
itiveness of the visual encodings exert a crucial effect on the
usability of the visualizations for the masses. We selected
several well-established visualization techniques with gentle
learning curves, such as area charts, heatmaps, and table-based
ranking. These techniques are seamlessly integrated to support
the decision-making workflow of users.

Limitations: Our system has two limitations. The first limi-
tation is from the model. The performance analysis in sub-
section 7.1 demonstrates the time and space efficiency of the
proposed model compared with the state-of-the-art model [39].
Our model can efficiently handle two months of full trajectory
data of nearly all taxis (8,816) in a large city with 10-million
inhabitants on a single workstation. In addition, the user study

proves the reliability of the proposed model with the two-
month data. However, increasing the volume of the data can
result in degraded time performance of this model, particularly
when the constructed trajectory graph is considerably large to
fit into the memory. To mitigate this problem, we plan to inte-
grate techniques, such as graph compression and distributed
computing, into ReACH. The second limitation is from the
visual design. Despite the reasonable balance between us-
ability and flexibility, average users who are unfamiliar with
the system may still experience difficulty. Accordingly, vi-
sual guidance techniques can be integrated into the system to
improve its usability [8].

Generalization: Although ReACH is developed for people
to find an ideal home location, this system can be adopted in
other location selection scenarios, in which the reachability
of locations is considered (e.g., selecting a location for a con-
venience store). The owner of the store may want to find a
competitive location that is less reachable from other stores
but more reachable from residential areas. Moreover, the over-
all framework is general and applicable to other datasets and
problems. The proposed model is not limited to the trajectory
data of taxis. Other movement and mobility data of moving
objects, such as the trajectories of sharing bicycles and telco
data, can be easily imported to the model to estimate the reach-
ability of locations. The visual design of ReACH is flexible
and can easily be extended to integrate other types of informa-
tion, such as census and crime data. Moreover, the design is
independent of the home location selection problem. It can
be beneficial for spatial sense-making and decision-making in
different domains, such as transportation and urban planning,
in which users need to iteratively generate candidate locations
and visually compare the generated locations.

CONCLUSION
This study characterizes the problem of reachability-centric
multi-criteria decision-making for choosing ideal homes. To
assist users in expressing their preferences, we introduce sev-
eral reachability concepts involved in this problem, including
activities and constraints. We propose a new graph-based
mining model that significantly extends the state-of-the-art
method [39] to achieve real-time performance. We used the
model as basis to design and develop a novel data-driven sys-
tem called ReACH. To the best of our knowledge, ReACH is
the first interactive visualization system for people to find an
ideal home based on massive urban data.

The proposed system has been deployed on a local workstation.
In the future, we intend to deploy this system as a cloud service
on the web. The mining model will be improved to reduce
the space complexity, thereby lowering the cost for the cloud
deployment. Other types of data, which are of interest to
people, will be incorporated to the proposed system.

ACKNOWLEDGEMENTS
We thank all participants and reviewers for their thoughtful
feedback and comments. The work was supported by National
973 Program of China (2015CB352503), NSFC-Zhejiang
Joint Fund for the Integration of Industrialization and Informa-
tization (U1609217), NSFC (61761136020, 61502416), Zhe-
jiang Provincial Natural Science Foundation (LR18F020001)
and the 100 Talents Program of Zhejiang University. This
project is also partially funded by Microsoft Research Asia.

REFERENCES
1. Shamal Al-Dohuki, Yingyu Wu, Farah Kamw, Jing Yang,

Xin Li, Ye Zhao, Xinyue Ye, Wei Chen, Chao Ma, and
Fei Wang. 2017. SemanticTraj: A New Approach to
Interacting with Massive Taxi Trajectories. IEEE TVCG
23, 1 (2017), 11–20.

2. Altisource Inc. 2017. Hubzu: Homes For Sale | Online
Real Estate Auctions | Property Listings.
http://www.hubzu.com. (2017). Online; accessed
07-Sept-2017.

3. Michael Behrisch, James Davey, Svenja Simon, Tobias
Schreck, Daniel Keim, and Jörn Kohlhammer. 2013.
Visual Comparison of Orderings and Rankings. In Proc.
of EuroVis Workshop on Visual Analytics.

4. Steven Bergner, Michael Sedlmair, Torsten Möller,
Sareh Nabi Abdolyousefi, and Ahmed Saad. 2013.
ParaGlide: Interactive Parameter Space Partitioning for
Computer Simulations. IEEE TVCG 19, 9 (2013),
1499–1512.

5. Maryam Booshehrian, Torsten Möller, Randall M.
Peterman, and Tamara Munzner. 2012. Vismon:
Facilitating Analysis of Trade-Offs, Uncertainty, and
Sensitivity In Fisheries Management Decision Making.
Computer Graphics Forum 31, 3 (2012), 1235–1244.

6. Jing Cai and Chung Keung Poon. 2010. Path-hop:
efficiently indexing large graphs for reachability queries.
In Proc. of ACM CIKM. 119–128.

7. Giuseppe Carenini and John Loyd. 2004. ValueCharts:
analyzing linear models expressing preferences and
evaluations. In Proc. of AVI. 150–157.

8. Davide Ceneda, Theresia Gschwandtner, Thorsten May,
Silvia Miksch, Hans-Jörg Schulz, Marc Streit, and
Christian Tominski. 2017. Characterizing Guidance in
Visual Analytics. IEEE TVCG 23, 1 (2017), 111–120.

9. Wei Chen, Fangzhou Guo, and Fei-Yue Wang. 2015. A
Survey of Traffic Data Visualization. IEEE TITS 16, 6
(2015), 2970–2984.

10. Yangjun Chen and Yibin Chen. 2008. An Efficient
Algorithm for Answering Graph Reachability Queries. In
Proc. of IEEE ICDE. 893–902.

11. Peter F. Colwell, Carolyn A. Dehring, and Geoffrey K.
Turnbull. 2002. Recreation Demand and Residential
Location. Journal of Urban Economics 51, 3 (2002), 418
– 428.

12. Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu.
2012. Query preserving graph compression. In Proc. of
ACM SIGMOD. 157–168.

13. Nivan Ferreira, Jorge Poco, Huy T. Vo, Juliana Freire,
and Cláudio T. Silva. 2013. Visual Exploration of Big
Spatio-Temporal Urban Data: A Study of New York City
Taxi Trips. IEEE TVCG 19, 12 (2013), 2149–2158.

14. Amy Fontinelle. 2017. Buying A Home: Choosing Your
Location. https://goo.gl/8ZKyJc. (2017). [Online;
accessed 07-Sept-2017].

15. Yanjie Fu, Yong Ge, Yu Zheng, Zijun Yao, Yanchi Liu,
Hui Xiong, and Jing Yuan. 2014. Sparse Real Estate
Ranking with Online User Reviews and Offline Moving
Behaviors. In Proc. of IEEE ICDM. 120–129.

16. Samuel Gratzl, Alexander Lex, Nils Gehlenborg,
Hanspeter Pfister, and Marc Streit. 2013. LineUp: Visual
Analysis of Multi-Attribute Rankings. IEEE TVCG 19, 12
(2013), 2277–2286.

17. Xiaoke Huang, Ye Zhao, Chao Ma, Jing Yang, Xinyue
Ye, and Chong Zhang. 2016. TrajGraph: A Graph-Based
Visual Analytics Approach to Studying Urban Network
Centralities Using Taxi Trajectory Data. IEEE TVCG 22,
1 (2016), 160–169.

18. Piotr Jankowski, Natalia Andrienko, and Gennady
Andrienko. 2001. Map-centred exploratory approach to
multiple criteria spatial decision making. IJGIS 15, 2
(2001), 101–127.

19. John F. Kain. 1962. THE JOURNEY-TO-WORK AS A
DETERMINANT OF RESIDENTIAL LOCATION.
Regional Science 9, 1 (1962), 137–160.

20. Dmytro Karamshuk, Anastasios Noulas, Salvatore
Scellato, Vincenzo Nicosia, and Cecilia Mascolo. 2013.
Geo-spotting: Mining Online Location-based Services for
Optimal Retail Store Placement. In Proc. of ACM
SIGKDD. 793–801.

21. Robert Krüger, Dennis Thom, Michael Wörner, Harald
Bosch, and Thomas Ertl. 2013. TrajectoryLenses - A
Set-based Filtering and Exploration Technique for
Long-term Trajectory Data. Computer Graphics Forum
32, 3 (2013), 451–460.

22. Brian H Y Lee, Paul Waddell, Liming Wang, and Ram M
Pendyala. 2010. Reexamining the Influence of Work and
Nonwork Accessibility on Residential Location Choices
with a Microanalytic Framework. Environment and
Planning A 42, 4 (2010), 913–930.

23. Yuhong Li, Jie Bao, Yanhua Li, Yingcai Wu, Zhiguo
Gong, and Yu Zheng. 2016. Mining the most influential
k-location set from massive trajectories. In Proc. of ACM
SIGSPATIAL. 51:1–51:4.

24. Yuhong Li, Yu Zheng, Shenggong Ji, Wenjun Wang,
Leong Hou U, and Zhiguo Gong. 2015. Location
Selection for Ambulance Stations: A Data-driven
Approach. In Proc. of ACM SIGSPATIAL. 85:1–85:4.

25. Dongyu Liu, Di Weng, Yuhong Li, Jie Bao, Yu Zheng,
Huamin Qu, and Yingcai Wu. 2017. SmartAdP: Visual
Analytics of Large-scale Taxi Trajectories for Selecting
Billboard Locations. IEEE TVCG 23, 1 (2017), 1–10.

26. Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei
Wang, and Yan Huang. 2009. Map-matching for
low-sampling-rate GPS trajectories. In Proc. of ACM
SIGSPATIAL. 352–361.

27. Dennis Luxen and Christian Vetter. 2011. Real-time
routing with OpenStreetMap data. In Proc. of ACM
SIGSPATIAL. 513–516.

28. Fábio Miranda, Harish Doraiswamy, Marcos Lage, Kai
Zhao, Bruno Gonçalves, Luc Wilson, Mondrian Hsieh,
and Cláudio T. Silva. 2017. Urban Pulse: Capturing the
Rhythm of Cities. IEEE TVCG 23, 1 (2017), 791–800.

http://www.hubzu.com
https://goo.gl/8ZKyJc

29. MongoDB Inc. 2017. MongoDB for GIANT Ideas |
MongoDB. https://www.mongodb.com/. (2017). [Online;
accessed 07-Sept-2017].

30. Stephan Pajer, Marc Streit, Thomas Torsney-Weir,
Florian Spechtenhauser, Torsten Möller, and Harald
Piringer. 2017. WeightLifter: Visual Weight Space
Exploration for Multi-Criteria Decision Making. IEEE
TVCG 23, 1 (2017), 611–620.

31. Roeland Scheepens, Christophe Hurter, Huub van de
Wetering, and Jarke J. van Wijk. 2016. Visualization,
Selection, and Analysis of Traffic Flows. IEEE TVCG 22,
1 (2016), 379–388.

32. Jinwook Seo and Ben Shneiderman. 2005. A
Rank-by-Feature Framework for Interactive Exploration
of Multidimensional Data. Information Visualization 4, 2
(2005), 96–113.

33. Conglei Shi, Weiwei Cui, Shixia Liu, Panpan Xu, Wei
Chen, and Huamin Qu. 2012. RankExplorer:
Visualization of Ranking Changes in Large Time Series
Data. IEEE TVCG 18, 12 (2012), 2669–2678.

34. Guodao Sun, Ronghua Liang, Huamin Qu, and Yingcai
Wu. 2017. Embedding Spatio-Temporal Information into
Maps by Route-Zooming. IEEE TVCG 23, 5 (2017),
1506–1519.

35. Sebastiaan J. van Schaik and Oege de Moor. 2011. A
Memory Efficient Reachability Data Structure Through
Bit Vector Compression. In Proc. of ACM SIGMOD.
913–924.

36. Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira Jr., and
Mohammed J. Zaki. 2014. Reachability Queries in Very
Large Graphs: A Fast Refined Online Search Approach.
In Proc. of ICDT. 511–522.

37. Elizabeth Weintraub. 2017. What Location, Location,
Location Means In Real Estate. https://goo.gl/ydJgKU.
(2017). [Online; accessed 07-Sept-2017].

38. Christopher Williamson and Ben Shneiderman. 1992.
The Dynamic HomeFinder: Evaluating Dynamic Queries
in a Real-Estate Information Exploration System. In Proc.
of ACM SIGIR. 338–346.

39. Guojun Wu, Yichen Ding, Yanhua Li, Jie Bao, Yu Zheng,
and Jun Luo. 2017. Mining Spatio-Temporal Reachable
Regions over Massive Trajectory Data. In Proc. of IEEE
ICDE. 1283–1294.

40. H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. 2016.
Reachability and time-based path queries in temporal
graphs. In Proc. of IEEE ICDE. 145–156.

41. Wenchao Wu, Yixian Zheng, Huamin Qu, Wei Chen,
Eduard Gröller, and Lionel M. Ni. 2014. BoundarySeer:
Visual analysis of 2D boundary changes. In Proc. of
IEEE VAST. 143–152.

42. Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun.
2011. Driving with knowledge from the physical world.
In Proc. of ACM SIGKDD. 316–324.

43. Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie,
Xing Xie, Guangzhong Sun, and Yan Huang. 2010.
T-drive: driving directions based on taxi trajectories. In
Proc. of ACM SIGSPATIAL. 99–108.

44. Wei Zeng, Chi-Wing Fu, Stefan Müller Arisona,
Alexander Erath, and Huamin Qu. 2014. Visualizing
Mobility of Public Transportation System. IEEE TVCG
20, 12 (2014), 1833–1842.

45. Wei Zeng, Phillip Chi-Wing Fu, Stefan Müller Arisona,
Alexander Erath, and Huamin Qu. 2016. Visualizing
Waypoints-Constrained Origin-Destination Patterns for
Massive Transportation Data. Computer Graphics Forum
35, 8 (2016), 95–107.

46. Jiawan Zhang, E. Yanli, Jing Ma, Yahui Zhao, Binghan
Xu, Liting Sun, Jinyan Chen, and Xiaoru Yuan. 2014.
Visual Analysis of Public Utility Service Problems in a
Metropolis. IEEE TVCG 20, 12 (2014), 1843–1852.

47. Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang.
2014. Urban Computing: Concepts, Methodologies, and
Applications. ACM TIST 5, 3 (2014), 38.

48. Yixian Zheng, Wenchao Wu, Yuanzhe Chen, Huamin Qu,
and Lionel M. Ni. 2016. Visual Analytics in Urban
Computing: An Overview. IEEE TBD 2, 3 (2016),
276–296.

49. Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui
Xiao. 2014. Reachability Queries on Large Dynamic
Graphs: A Total Order Approach. In Proc. of ACM
SIGMOD. 1323–1334.

50. Zillow Group Inc. 2017. Zillow: Real Estate, Apartments,
Mortgages & Home Values. http://www.zillow.com.
(2017). Online; accessed 07-Sept-2017.

https://www.mongodb.com/
https://goo.gl/ydJgKU
http://www.zillow.com

	Introduction
	Related Work
	Data And Task Abstraction
	Background and Concepts
	Data Description
	Task Analysis

	System Architecture
	Model
	Background and the Prior Method
	Graph-based Method
	Building a Trajectory Graph
	Computing Reachability with the Graph

	Visual Design
	Timeline View
	Map View
	Ranking View
	Wishlist View
	Interactions

	Evaluation
	Complexity Analysis of the Model
	Space Complexity
	Time Complexity

	Usage Scenarios
	Orchestration of Constraints
	Comparison with Reachability and Ranking

	Task-based User Study
	Participants and Data
	Evaluation Procedure and Tasks
	Experiment Result

	Discussion
	Conclusion
	Acknowledgements
	References

