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Abstract—As the final stage of questionnaire analysis, causal reasoning is the key to turning responses into valuable insights and
actionable items for decision-makers. During the questionnaire analysis, classical statistical methods (e.g., Differences-in-Differences)
have been widely exploited to evaluate causality between questions. However, due to the huge search space and complex causal
structure in data, causal reasoning is still extremely challenging and time-consuming, and often conducted in a trial-and-error manner.
On the other hand, existing visual methods of causal reasoning face the challenge of bringing scalability and expert knowledge together
and can hardly be used in the questionnaire scenario. In this work, we present a systematic solution to help analysts effectively and
efficiently explore questionnaire data and derive causality. Based on the association mining algorithm, we dig question combinations
with potential inner causality and help analysts interactively explore the causal sub-graph of each question combination. Furthermore,
leveraging the requirements collected from the experts, we built a visualization tool and conducted a comparative study with the
state-of-the-art system to show the usability and efficiency of our system.

Index Terms—Causal analysis, Questionnaire, Design study

1 INTRODUCTION

Questionnaires are a useful tool to collect quantitative information from
individuals and widely used in scientific studies. Via online tools like
SurveyMonkey [2] and Microsoft Forms [1], analysts can distribute
questionnaires and gather responses at a low cost and high efficiency.
Once responses are collected, analysts adopt various analysis methods
(e.g., correlation analysis, causal reasoning) to explore data, discover
causality between responses, and eventually derive insights for decision-
making. However, due to the huge search space and complex causal
structure in data, causal reasoning, as the final and critical step in a
typical survey analysis [30], is still extremely challenging and time-
consuming, and often conducted in a trial-and-error manner.

Causal reasoning in a typical questionnaire analysis is mainly based
on hypothesis and regression analysis [6]. Firstly, analysts hypothesize
the answers to several questions are the reasons for the answer to a
target question on the ground of their prior knowledge and calculated
correlation coefficient between questions. Secondly, they choose dif-
ferent regression methods (e.g., Regression Discontinuity Design [23],
Differences-in-Differences [9]) according to the sample size of data
and type of questions to test the hypothesis. Thirdly, they determine
whether they have found the correct reasons via the p-value calculated
by these methods. Such a pipeline is direct and easy to understand.
However, the repercussions are also obvious. First of all, it is practi-
cally impossible for analysts to exhaust the huge search space involving
different combinations of questions. Hence, it is desired to have a
method to organize the space and, more importantly, to provide an
intuitive and explainable way to explore and find promising question
combinations to drill in. On the other hand, focusing on reasons for the
target question may neglect the global causal structure of all questions,
leading to getting lost in the mediating variables and indirect causes.

In the visualization community, causal reasoning is also an ongo-
ing topic. Existing works on analytic systems [21, 39, 44] mainly
focus on visualizing the global causal structure and encoding it with
Directed Acyclic Graph (DAG). Specifically, the DAG design repre-
sents questions with nodes and causal relationships with directed edges.
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This encoding is successfully applied to many domains, ranging from
computational fairness [21] to pollution control [16, 17] and clinical
decision [32]. However, one of the primary drawbacks of DAGs is
visual clutter, which limits their effectiveness when applied to large
datasets [24]. While Xie et al. [44] proposed a new hierarchical layout
that partially mitigates visual clutter by hiding certain edges, applying
DAGs to questionnaire scenarios still poses several challenges. Firstly,
for comprehensive questionnaires with dozens or hundreds of questions,
The DAG can have serious crossover problems, which even the design
of Xie et al. is insufficient to address. Secondly, analysts often possess
domain knowledge about the questionnaire, which should be leveraged
to visualize a more accurate causality. Wang and Mueller [39] sum-
marized prior knowledge that could impact causal structure. However,
the constraints they summarized may not be comprehensive enough for
questionnaire analysis. For example, analysts may explicitly specify
that the answer to gender cannot be the effect of any question, which
is beyond the scope of their summary. The support of these needs of
questionnaire experts has not been sufficiently studied in existing work.
Thirdly, as the number of questions grows, the DAG structures before
and after adding/removing constraints will have a great difference. This
creates an unavoidable obstacle for analysts, who must frequently re-
orient themselves to the changing DAG during the exploration process.

In this paper, we propose Questionnaire Explorer 1 (QE), a novel
visual analytic system that helps experts explore the causal structure of
single-choice questions in questionnaire data efficiently and explainably.
To address the scalability issue of existing works, we introduce a causal
reasoning pipeline based on the sub-graph structures in the whole DAG.
First, we propose an association mining algorithm to find explainable
question combinations which are more likely to have a direct causal
relationship. The various question combinations serve as starting point
of exploration, which are summarized and visualized in a matrix-based
view. Once users have identified questions of interest, our system
extracts and visualizes the most relevant sub-graph about causality for
analysts to explore.Furthermore, a series of interactions are designed
crossing the matrix view and graph view to ensure that the analysts are
not limited to a specific sub-graph and can flexibly explore the whole
dataset. To evaluate the usefulness of QE, we conduct a comparative
study with the state-of-the-art system [44]. The result shows that QE
can significantly improve analysis efficiency and user experience on
large-scale questionnaires. The contributions are as follows:

• We propose an analysis pipeline based on sub-graphs to improve
the scalability of casual graph analysis.

• We build a visual analytic system to enable users to interactively
explore, comprehend, and conduct causal analysis tasks in ques-
tionnaire dataset.

• We evaluate our approach with usage scenarios and a controlled
user study.

1https://github.com/evenlasting/Questionnaire-Explorer
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2 RELATED WORK

2.1 Causal Reasoning in Questionnaire Analysis
Questionnaires are one of the most useful tools for analysts to gather
information. Once information is gathered, causal reasoning is an
essential follow-up to convert data into insights. The workflow of
causal reasoning in questionnaire analysis can be divided into two
steps [6], i.e. hypothesis generation and hypothesis test.

Hypothesis generation. At the beginning of the workflow, analysts
need to find a causal structure, including a target question and several
dependent questions from the whole data set. This unproven causal
structure is called hypothesis in the questionnaire domain. In the next
step, the hypothesis test, analysts can verify the hypothesis with the
help of statistical methods and obtain a final conclusion. The finding
process of the causal structure is mainly based on the semantic meaning
of each question and the correlation between the target and dependent
questions. The process is direct and easy to understand. However, the
disadvantages are also obvious. First, the hypothesized causal struc-
ture is often incomplete and neglects the global causal structure of all
questions, leading to getting lost in the mediating variables and indirect
causes. Second, the process is highly dependent on the background
knowledge of analysts and is often stochastic. Finally, it is inefficient
to search in the dataset of a questionnaire by enumeration. Since any
number of questions may have an inner correlation, the search space is
obviously too large for trial-and-error.

Some heuristic algorithms [11, 13, 28] have been proposed to deal
with the inefficiency challenge. They could recommend combinations
of relevant questions automatically by association mining algorithms.
Hence, analysts can perform hypothesis generation on a smaller explo-
ration space. Although reduced in size, the exploration space computed
by algorithms may also contain numerous fuzzy associations and lacks
an efficient method to explore relationships of corresponding questions.
Therefore, the analysts need additional support or interpretations of the
found question combinations to help them understand.

Our work is dedicated to solving the above challenges. Via an ex-
plainable association mining algorithm, we help analysts understand the
obtained problem combinations. At the same time, our work proposes
a visual analytic system to enable users to balance the exploration of
question combinations and the automatically-generated global causal
structure, aiming to better integrate users’ expert knowledge, associa-
tion mining algorithms, and causal reasoning algorithms.

Hypothesis test. Since this step is not the focus of our work, we just
briefly introduce the related test methods. After generating hypotheses
based on expert knowledge and the correlation coefficients, analysts
need to test whether the causal structures are real. The most effective
way to test the hypothesis is through randomized experiments [6]. How-
ever, randomization is usually too expensive to perform or completely
impossible. Therefore, many non-experimental tests on the ground of
regression are proposed to test the causality between questions (also
called variables at this step). The analysts may pick different methods
depending on the nature of questions and the dataset size. For exam-
ple, Differences-in-Differences [9] can be used for binary variables
that received an exogenous treatment, while regression discontinuity
design [23] is more suitable for continuous variables with a modeled
cut-off. Our visual analysis system (QE) does not focus on any specific
test method but on the general scalability problem when applying any
method in a questionnaire analysis of a large number of questions.

2.2 Visualization of Causality
Causality is not only important in questionnaire analysis, but also a
basic topic for visual analytic researchers. The study of causality in the
visualization area has its root on what is the best method to visualize
causality. Empirical studies [8, 26, 45, 46] have tested the performance
of different charts or animations in expressing causality. Deng et al. [17]
summarized that many basic charts (e.g., line charts, bar charts) are not
good choices. Bae et al. [7] recommended using node-link diagrams
to visualize causality and summarized several design guidelines for
effective analysis. These studies provide a solid foundation for the
visualization of causality as well as the design of our system.

On this basis, researchers have developed various visual analytic sys-
tems to assist users in exploring the causality across different datasets,
such as time series data [12, 25] and tabular data [44, 47]. Question-
naire data is a typical form of tabular data. Therefore, we focus on

the systems with the input of tabular data in this section. Wang and
Mueller [39] proposed the very first system that bridges the causality
mining algorithm (e.g., PC [36], F-GES [35]) and visualizations. Users
are enabled to interactively explore the automatically-generated causal
structure and can also add basic causal constraints (e.g., variable A is
the cause of variable B) via their priori knowledge. Furthermore, they
solve the challenge of exploration and comparison of causality within
different subgroups [40]. The follow-up systems [24, 44] focus on as-
sisting users in understanding the model and performing counterfactual
analysis. All of these systems are based on DAG visualizations, which
are widely applied in numerous visual analytics systems [27, 31]. With
the main drawback of visual clutter, DAGs hamper the scalability of the
abovementioned systems. Xie et al. [44] proposed a new hierarchical
layout that selectively hides edges in order to manage the visual com-
plexity. However, their method still visualizes the entire dataset, which
can result in severe cluttering particularly for questionnaire datasets
with dozens or even hundreds of questions.

To alleviate the scalability issue of existing causality visualizations,
this work proposes a visual analysis pipeline based on sub-graphs of
the whole causal structure. We also conduct a comparative study with
the state-of-the-art system of Xie et al. [44] to evaluate the usefulness
of such a pipeline and receive positive feedback.

3 INFORMING THE DESIGN

We have collaborated with data analysts from a reputable technology
company to conduct this study. The employees and customers of
this company fill out a large number of questionnaires every year.
However, the current method of questionnaire analysis is mainly based
on enumeration and statistical tests (see Sec. 2.1). It often takes one or
two weeks to obtain an analysis report of a questionnaire (e.g., [41]).
Causal reasoning, as the last and one of the most essential components
of questionnaire analysis, always takes up a large portion of the time
spent. In this section, we introduce an interview study to collect the
design needs on causal reasoning of analysts, which drives our model
and visualization designs.

3.1 Participants and Process
We invited four domain analysts from a technology company. Two of
them are experts in conducting surveys, who are interested in the quick
generation of causal structure, as it may contribute to completing the
analysis report more efficiently (P1-2). The other two are scientists
who specialize in causality analysis and have more than five years of
experience in modeling variables and discovering causality (P3-4).

We conducted two semi-structured interviews with experts in each
domain respectively, allowing experts within the same domain to com-
plement each other and avoiding divergent discussions among experts
from different domains. Each interview is introduced by a question-
naire report that describes the basic analysis process [41]. In the first
interview, we asked all experts to share their experience with question-
naire analysis, specifically focusing on causal reasoning, tools used for
causality reasoning, and the challenges they faced in their daily work.
We encouraged analysts to provide examples to illustrate the difficulties
they encountered. Afterward, we summarized all the requirements
and conducted a follow-up interview in which we asked the experts to
design possible algorithmic solutions for questionnaire analysts based
on the identified challenges.

3.2 Requirement Analysis
According to the interviews, we summarized seven critical needs.

At the beginning of the interview, we discussed with experts how to
increase the efficiency of the causal reasoning process and whether it is
feasible to achieve this by providing an automatically-generated causal
graph of the whole dataset. During the discussion, questionnaire ana-
lysts commented that showing the whole causal structure is quite good
for their current analysis pipeline. However, they were unfamiliar with
either causal graph visualization techniques or causal automated mining
algorithms. Since the causal reasoning pipeline in questionnaire analy-
sis is well studied, they wanted us to design some auxiliary tools around
their current pipeline (Sec. 2.1). More specifically, the question combi-
nations with possible causality should be the core concept of the design.
Their current approaches to generating such question combinations



include enumeration and association mining. For the sake of efficiency,
it is critical for our system to perform association mining algorithm
automatically to dig question combinations with potential causality
(N1) instead of enumeration. However, current association mining
algorithms showed weakness in supporting the semantic interpretation
and the efficient exploration of the result. Therefore, these combina-
tions (associations) should be explainable (N2) and can be orderly
explored via the help of quantitative indicators (N3).

Moreover, questionnaire analysts commented that the causal mining
algorithm could be applied to a selected combination to help them iden-
tify the mediating or indirect variables within the question combination.
At this point, the causality analyst (P3) came up with an idea “why
not cut out the part of the global causal graph which contains the
question combination they are interested in?” (N4) This idea balanced
the experts’ analytical habits [37] with the exploration of global causal-
ity and was agreed upon by all. Meanwhile, P3 also mentioned that
automated algorithms for causal reasoning could not be fully trusted.
Models need to be adjusted manually based on users’ prior knowledge.
To be specific, the system requires interactive provision (N5) and
visualization of the causal relationship between selected questions.

The identified needs can assist analysts in discovering several reasons
for a target question. Experts also pointed out that questionnaires
can contain many valuable causal patterns beyond just finding the
reasons for a target question. For instance, in a survey on remote work
policies, analysts may discover that childcare and personal relationships
significantly influence an employee’s choice of workplace. There may
also be other valuable causal relationships, such as the effect of age on
productivity and the effect of personal relationships on job satisfaction.
Therefore, analysts would like to explore the data without specific
target questions, discovering new and unexpected patterns. At this
stage, question combinations showing high relevance to others are
likely to pique analysts’ interest. Hence, it is necessary to visualize the
relationships between different question combinations (N6), as the
stronger the relationship between a combination of questions, the more
likely it is to be at the center of the causality. This type of question
combination could serve as a good starting point for free exploration.

At last, after the exploration of a causal structure, analysts would
take other factors into consideration, such as wondering whether hav-
ing children performs the same influence on the younger and older
employees’ preferences. This requires the system to support selecting
a sub-group of respondents for further analysis (N7).

4 ASSOCIATION MODELING

In this section, we introduce the formal definition of association
rules [5] (Sec.4.1) and propose a new computing method to recom-
mend explainable question combinations by association aggregation
(N1, N2) (Sec.4.2).

4.1 Question Association
Having their origin in Market Basket Analysis, association rules are
one of the most popular tools in data mining. With marketers’ attempts
to study customers’ shopping habits, association rules are applied to
analyze what kinds of commodities will be purchased simultaneously.
Formally, a set of items is defined as I = {I1, I2, . . . , Im}, and a purchase
record is defined as D = {d1,d2, . . . ,dn}. Every element in D is a non-
empty subset of I. For an association rule X⇒Y (X ,Y ⊆ I and X ∩Y =
/0), there are following requirements:

P(Y ∪X)> minsupport

P(Y | X)> mincon f idence
(1)

where P(X ∪Y ) represents the probability of X and Y being purchased
in D at the same time. P(Y | X) represents the probability of Y being
purchased under the condition X being purchased in D. minsupport and
mincon f idence are two thresholds, which mean how frequently the item
set appears in the dataset and how often the rule is true, respectively.
By treating options of questions as items and answers of respondents
as purchase records, we can apply association rules to questionnaire
datasets. In this way, we can solve association rules X ⇒ Y that option
set X leads to option set Y .

With the design needs from N2 and N3, our goal is to obtain the
combination of relevant question sets and quantitatively measure the

Fig. 1: (A) Distribution of option combinations in Q1 and Q4: The sum
of responses in the top n (4 here) categories is less than the threshold
(0.6 here). (B) A step of the Alg. 1: The algorithm searches from the /0.
The candidates in upper layer are merged with new questions to form
candidates of the next layer. Then, the algorithm checks each question
combination candidate, prunes unqualified candidates (red nodes in the
figure), and repeats this step.

relationships among them. However, there are two challenges in trans-
forming associations of options to the relationship between questions
and relevant question combinations. First, associations apply to ques-
tion options, but not to questions. However, traditional questionnaire
causal analysis typically focuses on questions rather than options, and
relationships between options are too detailed for analysts. Therefore,
we need to define a method to combine the associations of options into
questions. Second, the association of options has directions that are
obtained by the methods. In the process of combining the association of
options, We need to change the direction between options into direction
between questions or eliminate the direction between options.

4.2 Association Aggregation
To address these challenges, we used a two-step approach to aggregate
association rules. In the first step, we aggregated rules of different
directions. In the second step, we aggregated options:

1. Merge association rules [5] X ⇒ Y , if the option set of X ∪Y is
equal. Use the results of X ∪Y to represent them. For example,
we will merge (Q1 : yes,Q2 : no⇒ Q3 : yes) and (Q3 : yes,Q2 :
no⇒ Q1 : yes). And (Q1 : yes,Q2 : no,Q3 : yes) will be used to
represent the above mentioned two association rules.

2. Merge the results of the previous step if their option sets corre-
spond to the same set of questions. Use the questions to represent
them. For example, we get two option sets: (Q1 : yes,Q2 : no,Q3 :
yes) and (Q1 : yes,Q2 : yes,Q3 : no). We can combine them and
use (Q1,Q2,Q3) to represent them.

Now we obtain the combination of relevant question sets. Intuitively,
the more association rules are merged in a question set, the more rel-
evant questions in the set are. To achieve this, we first need to find
shared association rules. However, if we collect them with the most
commonly used algorithm, Apriori algorithm [5], the time complex-
ity is O(npeople(2noption)2), which is too large even for a small number
of options. Based on our definition of aggregation, we propose an
optimized approximation algorithm (Alg. 1). For each question combi-
nation, we only consider the top ntop set of option combinations chosen
by most respondents (Fig. 1A), leading to a reduced time complexity
O(npeople2nquestion−1). The analysts can set ntop. The default value of
ntop is ntop = f loor(∏

noption
i ∗0.3)(noption ∈ questioni) where noption

means the number of options in question i.
Based on such an algorithm, we can process questions with any type

of answer (e.g., numerical, categorical). But the questions must be
close-ended and single-choice. Association rules between questions
identified by our algorithm have some characteristics. First, each
association rule, e.g. (Q1,Q2,Q3), classifies respondents concerning
the differences in their responses. The option combinations, e.g. (Q1 :
yes,Q2 : no,Q3 : yes), chosen by different respondent groups reveal the
relevance between multiple questions and give a good explainability of
relevant question combinations (N2). Furthermore, we can evaluate the
relevance of question combinations by the number of respondents who
choose the top ntop set of option combinations (N3).



Algorithm 1: An optimized approximation algorithm for de-
tecting aggregated association rules.

Input: A record of all responses R, a set of all questions Q, the
constant support s, the number of combinations of
responses considered topn

Output: A set of question combinations Qc (Qci means an item
in the set)

Qc1 ←{q ∈ Q|FindTopOptionSum(q, topn)> s} ▷ For easier
understanding, FindTopOptionSum([Q1,Q4],4) is shown in
Fig. 1A, which means finding the total percentage of top 4
option combinations of Q1 and Q4 ;

for i← 2 to length(Q) do
Cci ← AprioriJoin(Qci−1) ▷ AprioriJoin is the join step of

Apriori algorithm [10]. For easier understanding,
AprioriJoin([Q1,Q2,Q3,Q4]) is shown in Fig. 1B which
means generating itemset of two questions
([Q1,Q2], [Q1,Q3], ..., [Q3,Q4]) from itemsets of one
question ([Q1,Q2,Q3,Q4]) by joining each. ;

Qci ←{qci ∈Cci |FindTopOptionSum(qci , topn)> s};
if Qci = /0 then break;

return Qc

5 SYSTEM DESIGN

Informed by the interview study, we iteratively designed the system
for causal reasoning in questionnaire analysis and exploration. During
a one-year iteration, many prototypes were built and tested with the
participation of two domain experts. In this section, we describe how
we designed the system based on their requirements and feedback.

5.1 Overview and Workflow
The user interface of QE is composed of three major views (Fig. 2): a
question combination view for providing the overview of all question
combinations with potential causality (N4, N6), a causal view for
showing causality and linear regression among questions in a question
combination (N5), and a respondent view for showing the distribution
of respondent involved in a question combination (N3, N7). Meanwhile,
a question list view is given to display the content of each question,
which keeps users informed of the questions’ details at any time.

The main workflow of this system is as follows. Users explore
the question combination view and see the overview of the whole
dataset. Next, they may find several question combinations that have
significant patterns (e.g., ranking higher or covering more respondents).
To dive into the inner causality of these questions, users will explore the
causal structure of them in the causal view and inspect the distribution
of respondents in the respondent view. After analysts gain a deeper
understanding of the data, they may filter a certain group of respondents
and repeat the exploration process again.

5.2 Question Combination View
As shown in Sec. 4, we identify numerous relevant question combi-
nations via an association mining algorithm. Following the visual
information-seeking mantra [14], we start by designing the overview
of these question combinations. A combination of questions is abso-
lutely a set. In order to help users explore the numerous combinations
(sets), we adopt UpSet [29], which is a highly scalable set visualization
approach and also widely used in the visualization community [48]
to visualize combinations. However, UpSet does not directly meet all
the design needs of analysts. According to the design needs and the
workflow, this view should provide users with details of each ques-
tion combination (N2, N3) and how individual questions are related to
each combination (N6). Besides, the respondent groups should also be
displayed to help analysts compare the number of major respondents
between different question combinations (N2). Based on these needs,
we have made the following designs on the ground of UpSet.

5.2.1 Question Combinations
Question combinations are the core concept in our analysis workflow.
This view uses a matrix-based method from UpSet to visualize question

combinations (Fig. 2B). Each row represents a question, while each
column represents a combination. For each question, we label its id
on the left side. And analysts can view the question description by
hovering the mouse on the id. For combinations, each of them has two
properties: respondent classification (N2) and question relevance (N3).

Respondent classification. For a combination, we classify respon-
dents by their answers to the questions in the combination. In our
implementation, we take the top n (n is calculated in Sec. 4.2) groups of
question options in each combination, representing the answers of the
majority of respondents to those specific questions. In other words, the
majority group for a question combination includes all the respondents
whose answers fall into the top option groups. The more concentrated
the responses are, the more easily this combination can be interpreted.
We adopt bar charts to reveal this information. The height of each bar is
used to encode the number of the majority group, which can effectively
show how concentrated or diverse the majority of answers to a question
combination are. For example, if there are a great number of respon-
dents choosing the same options for the questions, it is considered an
abnormal pattern that is worth further investigation.

Question relevance. A question combination may contain two or
more questions. We use black and gray colors to indicate whether a
question is contained by a combination or not. And we use a black line
to connect all included questions following the design of UpSet.

Beyond the inner questions, the experts want to look further at
how important a question combination is, and how relevant a non-
included question is to the hyperedge. Thus they can be more targeted
in some questions and perform further analysis. Therefore, for each
question combination, we use the width of connection lines to encode
the number of occurrences of the current combinations among all solved
combinations. For example, the solved question combinations are: [Q1,
Q2], [Q1, Q3], [Q2,Q3], [Q1, Q2, Q3]. Then the width of connection
line encoding [Q1, Q2] (which appears in both [Q1, Q2] and [Q1, Q2,
Q3]) is wider than [Q1, Q2, Q3] (which only appears in [Q1, Q2, Q3]).
This encoding allows users to simply find important combinations
which occur most often in the large space of all combinations. For the
questions that are not included in that particular combination, we will
analyze their correlation with the combination. For the most relevant
question, we use darker gray color to encode it in this view. And the
darkness is linearly correlated to the calculated value. This question
must be relevant to the corresponding question combination and can
hint about the direction for further exploration.

With these visual encodings, users can more intuitively discover the
pattern of questions and combinations in the dataset.

5.2.2 Order of Question Combinations

The display order of question combinations would influence analysts’
comprehension since people tend to observe the items positioned at the
beginning. To determine an appropriate order of question combinations,
we adopt three rules to place them hierarchically. First, analysts may
manually choose an interesting question by clicking its name. All
question combinations that contain this question will be placed to the
left. Second, question combinations with more questions are preferred
and placed to the left. Finally, question combinations covering more
respondents are preferred and placed to the left.

5.2.3 Cluster of Questions

Our design is based on UpSet [29]. However, the matrix of UpSet
becomes sparse when the number of questions is large. Meanwhile,
the designer of a questionnaire tends to design questions of different
focuses, which are, unfortunately, hard to differentiate using UpSet.

To address the issue of sparsity and help analysts understand the
different aspects of the questions, we adopted a clustering algorithm
based on weighted sets [42] to cluster the questions automatically. We
consider the number of majority respondents of a question combination
as weights. This method uses a greedy algorithm to divide the questions
automatically and does not require the user to specify the number of
clusters in advance. The visualization of each cluster is based on UpSet
as described above and is vertically laid out in the question combination
view. Furthermore, we provide users with a button to toggle whether to
display questions by cluster or not. Users can choose it according to
their preferences and the features of the dataset.



After the exploration of question combinations, analysts will further
select the combination of interest via information from different encod-
ings. The information in a question combination can be divided into the
causal structure between questions (N4) and the relationship between
respondents and questions (N2). These two types of information can
be checked respectively in the causal view and respondent view.

5.3 Causal View
We designed this view to visualize the causal structure of selected
question combinations (N4). Since analysts often use regression-based
methods to test the truth of causality (Sec. 2.1), we incorporated linear
regressions into this view to help analysts determine the influence of
each cause and the fitness of target questions. Linear regression uses
dependent variables to fit an independent variable, which represents
the target question in questionnaire scenario. Therefore, it is crucial
to calculate the causal structure first to identify the dependent and
independent variables. The system then needs to provide an intuitive
visualization for analysts to explore and verify the causality and linear
regression coefficients. Fortunately, both calculating and visualizing
causal relationships have been well-studied for a long period of time. In
our system, we directly adopted the Fast Greedy Equivalence Search (F-
GES) algorithm [35] to construct causal relationships between questions
and used a DAG design [33] to visualize the final structure.

5.3.1 Encoding of Nodes and Links
Refer to Causality Explorer [44], every question (node) is represented
by a pie chart (Fig. 2C), where each sector encodes the proportion of
an answer. This can help analysts learn the distribution of answers
for each question and provide guidance for exploration. For instance,
the analyst can quickly identify questions that most respondents share
the same answer. The outer ring of nodes reveals how well a question
is fitted by the linear regression of its cause questions (Fig. 2C). The
better the fit, the greater the angle.

Links represent causal relationships and their directions are consis-
tent from the lower node to the upper node. For instance, in Fig. 2C1,
there is a link from “Q15:Are you frequently absent from school?” to

“Q16: Students’ grades” which indicates that the habit of skipping
classes likely influences the students’ grades. Each link possesses two
properties: uncertainty and linear regression coefficient. Uncertainty
is generated by the bootstrapping F-GES algorithm, which will be in-
troduced in Sec 5.3.2. As one of the most important variables when
analyzing, we encode uncertainty using link thickness, which is con-
sidered the most effective visual channel [22] for lines. Thicker edges
represent lower uncertainties. Linear regression coefficients, on the
other hand, not only indicate the strength of the influence, but also
show whether the influence is positive or negative. They are another
important property that analysts are concerned about, so we just place
the precise values of coefficients right next to the edges.

5.3.2 Graph Layout
We adopt the DAG layout proposed by Xiao et al. [44], where cell
positions are determined by their casual relationships. For example,
if Q1 causes Q2, the vertical position of Q1 is lower than Q2, which
helps analysts quickly understand the directions of causal relationships.
Our method contains four steps.

Step1: F-GES. In the first step, we use the state-of-the-art F-
GES [35] algorithm to obtain the causal relationships between all
questions. Specifically, F-GES adopts a greedy strategy to enumerate
the best Bayesian Information Criterion (BIC) by adding and deleting
causal relationships. The uncertainty of a causal relationship is the
decreasing value of BIC after deleting itself:

Uncertainty(e) = BIC(G)−BIC(G−e) . (2)

This algorithm guarantees that the uncertainty is positive.
Step2: BFS. Directly showing all casual relationships of the whole

dataset will cause severe visual clutter. To deal with this problem,
we only display causal relationships between questions in a question
combination. However, questions of a selected combination may not
be directly connected by casual relationships, but through some inter-
mediate questions. For example, the gender of the family member who
takes care of you primarily does not change your grades directly, but
it may affect your character and habits, which in turn influence your

grades. This suggests the necessity to explore questions of interest in
the context of directly relevant questions. Unfortunately, finding the
least number of questions to make the causal DAG connected is an
NP-hard problem, known as Steiner Tree Problem [20]. Hence, we take
BFS to deal with this situation and obtain a sub-tree that connects all
questions in the question combination.

Step3: Topological Sorting. Our design uses arrows to encode the
direction of causal relationships. However, arrows may intersect with
each other, leading to severe visual clutter. To address this issue, we
adopt the topological sort method [44] to divide a casual graph into
layers for better readability.

Step4: User Constraints. The automatic result may not perfectly
match experts’ domain knowledge. Therefore, our system allows users
to manually add or remove prior constraints to guide the causal graph
generation in the first step of F-GES. These constraints help F-GES
recompute and optimize other relevant casual relationships, and the
visualization will be updated accordingly to reflect the changes. For
example, experts may specify that the childcare question should not be
the direct cause of work hour questions, by removing the corresponding
link in the user interface. The constraint will then be incorporated
into the F-GES model. After recomputing, these two questions are
bridged by the work efficiency question with updated uncertainty scores.
Mathematically, we support four types of prior constraint: Q1→ Q2,
Q1 ̸→ Q2, ∀Q ̸→ Q1, and Q1 ̸→ ∀Q, corresponding to required causal
relations, non-existing causal relations, setting independent questions
and setting dependent questions.

Each constraint matches an interaction. (1) By linking two nodes
(Fig. 2C), users can add a prior knowledge that Q15 is the reason
for Q16. (2) By crossing out a link (Fig. 2C1), users can add prior
knowledge that Q9 is never the reason for Q16. (3) Users can set a
problem as a dependent question by clicking on it with the right mouse
button and choosing the corresponding option. (4) Users can also set a
problem as an independent question in the same way.

5.4 Respondent View

Although the question combination view contains bar charts showing a
summary of major respondent categories, it is still unclear what options
these respondents select in their answers. In response to this limitation,
when users click a question combination in the question combination
view, the respondent view illustrates the detailed relationships between
respondent categories and question options. The main component
of the view consists of a donut chart and a set of fan-shaped glyphs
in the center (Fig. 2D). The outer ring of the component is evenly
segmented into several sectors corresponding to the questions in a
question combination. Then, for each question sector, we further divide
it into smaller option sectors with angles proportional to the number of
respondents who choose the corresponding options.

Inside the ring, we place fan-shaped glyphs corresponding to the
top respondent categories of the question combination. For each glyph,
the fans of the same color connect the option sectors, which means
a major respondent category and their answers. The centered circle
radius and fan angles are used to encode the number of respondents
in the category of corresponding colors. Combined with their domain
knowledge, experts can go through the options of the major respondent
categories to determine whether the relationship between these ques-
tions is explainable or unexplainable. Explainable relationships can be
used to test experts’ hypotheses, while unexplainable relationships may
be caused by coincidence and should be assigned a lower priority in the
analysis. Also, analysts can learn about the characteristics of different
categories of respondents. Some categories of respondents may attract
the analysts’ interest, and the analysts can set this group of people as
the analysis target of QE by clicking the corresponding fans or sectors.

6 EVALUATION

In this section, we demonstrate the effectiveness and usefulness of our
system in a two-part evaluation. We first report two usage scenarios of
different datasets. Then, we compared our system with a scalable causal
analysis system [44] in the questionnaire scenario with a controlled
user study. These two experiments clearly demonstrate the strengths
and weaknesses of our system.



Fig. 2: The interface of QE: (A) The question list view displays all questions. (B) The question combination view provides an overview of the
whole dataset. (C) The causal view presents the causality in a relevant question combination. (D) The respondent view visualizes the clusters of
respondents divided by a set of relevant questions for users to deep dive. (other makers with subscripts) They show different patterns indicated by
the exploration of students’ grades in Sec 6.1.1.

6.1 Usage Scenarios
The following two cases use two real-world datasets to show different
usage scenarios of our system.

6.1.1 Causal Reasoning
In the first case, we demonstrate how our system can help analysts
find the questions that have strong influences on a target question.
The dataset of this case is an open-source questionnaire dataset from
Tianchi [3], containing students’ information as well as their grades.
In this case, the students’ grades (Q16 in Tab. 1) is the target question.
Bob, the teacher, needs to explore causal relationships between the
target question and other questions. There are 18 questions (all single-
choice questions) and 481 respondents in this dataset.

After loading the dataset, Bob found that the questions were auto-
matically divided into three clusters (Fig. 2B). To obtain an overview
of the dataset, He looked at the questions in each cluster. Combining
his background knowledge, He determined that the three clusters were
respectively related to parent situations (Fig. 2B3, such as Q8), student
performances (Fig. 2B2, such as Q9 and Q11), and student profiles
(Fig. 2B1, such as Q1 and Q2).

After getting familiar with the questionnaire, Bob had to identify
some questions related to the target question grades. He found that the
target question was in the cluster of student performances (Fig. 2B2),
which led him to hypothesize that grades were more relevant to the
questions related to student performances .Therefore, he first explored
this cluster. There are a lot of combinations in this cluster. The question
combinations were ranked based on their importance (see Sec. 5.2.2).
Bob found the most important combination (Fig. 2B∗2) contains three
questions (grades, absence days, and raised hands). To further un-
derstand how these questions are causally-related, he tapped on this
combination to explore them in the respondent and causal views.

In the respondent view (Fig. 2D), sectors of the same color repre-
sented a group of people who gave the same answers to grades, absence
days, and raised hands. For example, red sectors represented the stu-
dents who were absent from school less (the answer absence days is
No), raised their hands more (the answer of raised hands is Yes), and
got better grades (the answer of grades is A). In contrast, the green
sectors represented students who had bad habits and struggled with
achieving good grades. The relationship between performances and

grades was exactly in line with Bob’s background knowledge.
In the causal view (Fig. 2C), the grades (Q16) pie chart is connected

to the absence days (Q15) pie chart, which meant our underlying model
implied that grades was the cause of absence days. However, it did
not match Bob’s domain knowledge, because grades should only be
the effect of absence days. To correct the wrong causal relationship,
Bob manually added a new causal constraint from absence days (Q15)
to grades (Q16) by a link.After recalculating, the causal graph was
automatically refined by leveraging the user input (Fig. 2C1). Via
hovering the mouse on the outer pink ring, Bob found that raised
hands and absence days fit the grades well linearly, with a score of
0.51. However, the red and purple parts in Fig. 2D showed that the
students who raised their hands (Q9, raised hands) would not prefer
to skip school (Q15, absence days), which meant these two questions
are highly correlated and may have interchangeable effects on grades.
If so, these two questions could fit grades well, regardless of whether
together or individually [19]. Bob eliminated one causality by crossing
to check the interchangeable effect. The fit did not change much
(Fig. 2C2), indicating that raised hands and absence days were highly
interchangeable and dependent on each other. So Bob only needed to
choose one of them to study grades. He found that the combination of
grades and absence days ranked higher than the combination of grades
and raised hands. Then, he chose absence days because its relationship
with the target question is stronger.

After checking other question combinations, Bob found an interest-
ing pattern that caregiver gender (Q8) is sometimes calculated to be
the direct reason for student performances, and the indirect reason for
grades. Because caregiver gender is in the cluster of parent situations,
Bob decided to continue exploring the influence of parent situations on
the grades. Hence, Bob dragged the question of grades (Q16) to the
cluster of parent situations (Fig. 2B∗2).

The updated cluster (Fig. 2B∗3) has a small number of question com-
binations, which means other questions in this cluster may have little
to do with Q16. Considering the indirect causality of caregiver gender
and grades, he tapped the question combination of these two questions,
which also ranked as the first in the view, to see the explanation in
the respondent view and the causal graph in the causal view. In the
respondent view, Bob found there are three dominant student groups,
corresponding to purple, red, and green sectors, respectively. And the
patterns suggested that female caregivers (purple sectors) might lead to



better grades, compared with male caregivers (red and green sectors).
At the same time, the link in the causal view showed that the caregiver’s
gender affected grades by influencing some study habits like raised
hands (Q9) and announcements (Q11). After the exploration, Bob felt
caregiver gender could be another important reason for grades.

He wanted to check whether there were other important reasons. He
merged all clusters together by clicking the toggle and explored some
highly ranked question combinations. Based on the causal sub-graph
of these question combinations, Bob believed that the other questions
were unrelated to the target question or highly dependent on absence
days and caregiver gender. At the same time, Bob found that caregiver
gender and absence days could fit grades well with a score of 0.56. So
Bob believed that he had successfully found two high-quality causes of
grades and gained a deep understanding of this dataset.

6.1.2 Free Explorations

The second dataset is collected from a survey conducted in a company,
regarding the working experiences during the COVID-19 pandemic
period. The questionnaire dataset consists of 72 questions (66 single-
choice questions) and 475 respondents.

In the first step, Bob, the analyst, used our system to explore ques-
tions related to the target question: “which workplace do you prefer
the most?” (Q60, denoted by workplace), and successfully found three
questions to fit workplace as reasons using a similar way as in Sec. 6.1.1.
He obtained a satisfying linear regression fit score of 0.23. The three
reason questions included “I feel good to be closer to family”, “I feel
good to spend less money on commute, food, etc.”, and “compared with
working in office, how has your productivity changed”. In this section,
we demonstrate how Bob used our system to do further open-ended
exploration and discover some unexpected causality.

First insight. After finishing the question relationship mining task
around the target question, Bob went back to see the overview in
the question combination view. He merged all clusters by clicking
the clustering toggle to explore the relationship of all questions. He
observed that the color of “frequency of email usage” (Q32) was dark in
columns of combinations involved “frequency of group-wise meetings”
(Q37), “I feel more flexible to join meetings” (Q41), and “I have
difficulties with colloquial meetings” (Q47)(Fig. 3B). According to
Bob’s experience in the former question relationship mining, he knew
that these questions were in the same cluster and were about meetings.
This encoding indicated that emails (Q32) are relevant to questions
in the cluster about meetings. Thus, Bob formed a hypothesis that
this was because people with more meetings may use email to book
meetings or discuss online more frequently. He then would check this
hypothesis by QE. He clustered all questions by clicking the clustering
toggle and moved the emails question (Q32) to the meeting cluster, and
then chose the top-ranked combination that involved Q32 in this cluster.
The question combination included emails (Q32), online documents
(Q31), and group-wise meetings (Q37). Bob explored the distribution of
respondents (Fig. 3C) in the respondent view, which would bring some
ideas about question emails (Q32). The sectors in the respondent view
indicated the largest respondent groups (Fig. 3C1) showed the answer
with the highest number of choices was increased and significantly
increased. It meant most of the employees used online tools(e.g.,
online documents, emails) more frequently during the epidemic. At the
same time, the green and red sectors in the respondent view meant that

Table 1: Questions used in Sec. 6.1.1

Id Question Acronym

Q1 What is your nationality nationality
Q2 What is your place of birth place of birth

Q8 Gender of the family member who caregiver gendertakes care of you primarily
Q9 Do you like to raise hands in class raised hands

Q10 Do you often view the TED resources TED resources
Q11 Do you often view the announcements announcements
Q15 Are you frequently absent from school absence days
Q16 Students’ grades grades

Fig. 3: (A) The distribution of answers to the question job (Q62) is
different between all respondents and those who send more emails.
(B) The emails question (Q32) is important in many other question
combinations (C). The respondent view shows a lot of participants use
emails, online documents, and group-wise meetings more often.

employees who used emails more had more meetings and did use other
online tools more. Therefore, Bob accepted his first insight due to the
explanation in the respondent view of this hyperedge.

Second insight. Bob now wanted to see what patterns the people
who sent more emails had. From Bob’s domain knowledge, He guessed
these people might be managers. Because during the Covid-19, man-
agers needed to send more emails and hold more meetings to organize
employees who worked from home. He chose this part of people who
selected "increased" in Q32 by clicking the corresponding arc and
looking at the question combination view to get an overview. In the
question combination view, Bob found that most of the questions had
a light gray color. But the row of Q62 (job) was much darker. At
the same time, the vertical connection lines of question combinations
involving Q62 were thicker than others. This meant that Q62 (job) had
a strong relevance with other questions and was included in a number
of question combinations. As Bob remembered, he did not see a similar
pattern before selecting respondents who sent more emails.

Bob thought about this phenomenon and gave a hypothesis: for some
jobs, nobody sent more emails. Therefore, after selection, respondents’
answers were more centered on the left jobs. If respondents of Q62
(job) were concentrated in the corresponding options, the calculated
association (question combinations) would be more and stronger in
our algorithm (see Sec. 4). In order to test this hypothesis, He clicked
Q62 and checked the respondent view (Fig. 3A) to see people’s choice
of jobs for all people and people who sent more emails. There were
indeed some disappeared jobs shown in Fig. 3A1, including Design,
HR, Finance, and District Community Process Manager. Meanwhile,
the angle of the arcs representing Managers in the right ring was
much smaller than in the left ring. This meant that Managers did
not think they used more emails while other jobs (e.g., engineer) did.
Although this was not in line with Bob’s domain knowledge, Bob
could try to give an explanation: the managers were used to sending so
many emails before COVID-19, so they did not think that their use of
emails increased. And developers were just the opposite. Through this

Table 2: Questions used in the Sec. 6.1.2

Id Question Acronym

Q15 I have sufficient office setup office setup
Q31 Frequency of online documents usage online documents
Q32 Frequency of email usage emails
Q37 Frequency of group-wise meetings group-wise meetings
Q41 I feel more flexible to join meetings flexible meetings
Q44 I feel easier to access team members. members relationship
Q47 I have difficulties with colloquial meetings colloquial meetings
Q60 Which workplace do you prefer the most? workplace
Q62 What is the role of your job? job



exploration, Bob gained additional insights. Online tools were crucial
and frequently used during the epidemic. Moreover, changes in work
style had a greater impact on developers than on managers.

Third insight. In the above exploration, Bob discovered that job
was an important and interesting question as people’s decisions may
be influenced by their job roles. He wanted to explore its influence
on the target question (workplace) further by finding reasons for the
target problem for people with different jobs. He completed the ques-
tion relationship mining task by following a similar process to that in
Section 6.1.1 for developers and managers.

As a result, Bob achieved much higher fits for both managers and
developers. For developers, Bob replaced the reason “I feel good to be
closer to family.” with “I have better work environment.” and achieved
a better fit score of 0.26. For managers, Bob replaced “I feel good to
spend less money on commute, food, etc.” and “compared with working
in office, how has your productivity changed?” with “Please rate
your overall satisfaction with working from home during the COVID-
19 period. ” and “I feel good to have freedom for physical actions
(standing, sitting, etc.).” and got a great fit of 0.31. With the open-ended
exploration, Bob gained a deeper understanding of this dataset and was
able to provide better recommendations to the company.

6.2 User Study
To test the efficiency (G1) and usability (G2) of our system, we con-
ducted a comparative study. The traditional questionnaire analysis
process (usually performed using tools like Python, SPSS, Excel, etc.)
involves enumerating causal structures and conducting interspersed
tests, which can take several working days to complete. In contrast, QE
aids users in understanding data through visual designs and provides
heuristic high-quality causal structures, which is also confirmed by
our tester experts. Therefore, comparing QE with traditional analysis
tools is not meaningful enough. To ensure a more fair comparison,
We selected Causality Explorer [44] (S2), a state-of-the-art research
work for causal analysis of large tabular datasets, which could be a
competitive tool for exploring the causal structure of all questions in
a questionnaire. At the same time, QE (S1) adopts an identical DAG
layout with Causality Explorer. The main difference between them
is the analysis pipeline which is exactly the focus of our comparison:
QE is based on causal sub-graphs of question combinations, while
Causality Explorer shows the whole causal graph to users. Apart from
the main difference, Causality Explorer does not support adding causal
constraints interactively. Therefore, We have added the same interac-
tion to the causal graph view in Causality Explorer as in QE. Then the
analysts can perform the same interactions to add constraints and select
part of the respondents in both QE and Causality Explorer.

We conduct a with-in-subject design to compare these two systems
based on two datasets. The first dataset (D1) is the same dataset in
Sec. 6.1.2. And the second dataset (D2) is collected from Kaggle [4]
which contains 150 questions to explore the preferences, interests,
habits, opinions, and fears of 1010 young people. To balance the effect
of different systems and datasets [43], we derived four conditions,
including [D1S1, D2S2] (A participant first uses QE to complete tasks
on Dataset 1, and then uses Causality Explorer to complete tasks on
Dataset 2), [D1S2, D2S1], [D2S2, D1S1], and [D2S1, D1S2].

6.2.1 Participants and Study Setup
We recruited 12 participants [38], 6 males, and 6 females, aged 24-30,
from local companies. All of them have Master’s degrees and more
than four years of experience in questionnaire analysis. In their daily
work, Python, R, Excel, and SPSS are used as the analysis tools. None
of them have experience in using interactive visualization systems
(e.g., Causality Explorer) to perform causal reasoning tasks. QE and
Causality Explorer are both deployed on the cloud. Participants took
part in the study remotely via video conference on their own computers.

6.2.2 Procedure
Participants were first asked to watch two short videos to get familiar
with QE and Causality Explorer. The videos contained the interface
and interactions of both systems. Then, they could use the two systems
to explore a training dataset (the same dataset in Sec. 6.1.1). They were
encouraged to ask us questions on the systems until they were familiar
enough with both QE and Causality Explorer.

Fig. 4: There are two step-by-step tasks on each dataset: (T1) Find rea-
sons for a target question. (T2) Redo T1 for a subgroup of respondents.

After the warming-up training, each participant was asked to perform
causal analysis tasks (Fig. 4) under the above-mentioned four conditions
([D1S1, D2S2], [D1S2, D2S1], [D2S2, D1S1], and [D2S1, D1S2]).
In each task, the participants were allowed to analyze with a time
limit of 20 minutes or stop when they found all causes they wanted.
Lastly, we asked participants to complete a questionnaire about the
usability of both QE and Causality Explorer, followed by a short semi-
structured interview. During the interview, we discussed with them
their preferences for the two systems. The whole study lasted about
two hours. And each participant was paid 100 CNY after the study.

6.2.3 Results
In the following, we report results of the study to demonstrate the
efficiency (G1) and usability (G2) of QE.

G1: Efficiency in causal reasoning. In our study, all participants were
experienced in questionnaire analysis. Furthermore, after conducting
our experiments, we ensured that all identified reasons satisfied two
criteria: (1) no significant collinearity (tested by variance inflation
factor [15]); (2) no obviously incorrect reasons (e.g., age as the reason
for grades). Since the causal reasoning was highly dependent on the
analysts’ prior knowledge, we assumed that all participants were able
to find correct causes which matched their prior knowledge. Therefore,
we test G1 by analyzing the average time to find a cause instead of
checking the correctness of the causes.

In our study, there are three factors that affect the average time to
find a cause, including different datasets, systems, and tasks. Our aim
is to check whether the time to find causes through QE is less than
Causality Explorer and has no relationship with the choices of dataset
and task. Considering the task to find causes for all respondents and the
task to find causes for a part of respondents always occurred in pairs,
we performed a paired t-test (two-tailed) on these two types of tasks
and found no significant difference for them (p = 0.37). This means we
can ignore the effect of different tasks when analyzing the difference be-
tween systems and datasets. Then, we check the interaction relationship
of datasets and systems via Two-Way ANOVA. There is no significant
interaction (p = 0.43) between datasets and systems. Therefore, we
do not need to consider the impact of datasets when comparing QE
and Causality Explorer. We directly analyze the average time to find a
cause for each analyst using different systems. The time performance is
shown by box plots in Fig.5A. Then we performed a t-test (one-tailed)
to check whether analysts could find causes more efficiently on QE
than on Causality Explorer. The results yielded p < .001, validating
that the efficiency of causal reasoning was significantly improved on
QE compared to Causality Explorer.

According to our observation and the post-study interview, we iden-
tified two reasons why QE is more efficient than Causality Explorer.
First, the information in Causality Explorer is homogeneous and scarce.
Analysts can only find new causal relationships based on the semantic
meaning and their prior knowledge after checking the causes that were
directly or indirectly connected to the target question. This process is
inefficient and may lead to missing causal relationships. In contrast,
QE provides visual encodings in the question combination view and



Fig. 5: Questionnaire Explorer (QE) v.s. Causality Explorer (CE). (A)
Average time (in minutes) to find a reason. (B) Participants’ rantings from
the post-study survey (1 = "strongly disagree" and 7 = "strongly agree").

respondent view, which help analysts identify possible causes and un-
derstand the relationships between questions. These hints could help
the analyst explore and validate the missing causal relationships. Sec-
ond, the causal structures in Causality Explorer before and after adding
constraints will have a great difference. Users of Causality Explorer
had to recognize the huge DAG, including a large number of nodes and
edges. However, much of the information was unhelpful in finding the
causes of the target questions. In contrast, QE eliminates such an issue
by showing the sub-graphs of the whole causal graph.

G2: Usability. In the post-study interview, we asked users which
system they preferred to use for performing the causal reasoning task in
their daily analysis. 91.7% (11/12) of users preferred QE. At the same
time, users rated QE positively (Fig. 5B) in terms of easy of use (M :
6.2,SD : 0.8) and enjoyable to use (M : 5.8,SD : 0.6). In comparison,
the Causality Explorer was rated by: easy to use (M : 4.7,SD : 2.1) and
enjoyable to use (M : 3.8,SD : 1.5). There is a significant difference
in these two questions (one-tailed t-test, easy to use: p < .01 and
enjoyable to use: p < .01) between QE and Causality Explorer. This
indicates that QE is more useful in the causal reasoning of scalable
questionnaire data. The other ratings, including Overall helpful and
Easy to learn, were not statistically significant.

According to the interview, there were two reasons that made users
prefer QE. First, the workflow of QE, which is based on question com-
binations, is closer to the regular pipeline in users’ daily work. Users
reported that QE not only gives the causal structure of the problem
combinations they are interested in but also lists mediating variables in
the structure, which is a great aid to their daily analysis. Second, the
causal graph view of Causality Explorer, including dozens of nodes
and hundreds of edges, looked chaotic. These visual clutters gave rise
to users’ resentment and also made the system low-usability. All partic-
ipants (12/12) noted this point in the interview. At the same time, QE
can help them focus on useful information while alleviating clutters.

7 DISCUSSION AND FUTURE WORK

In this section, we will discuss the implications, lessons learned, and
the limitations and future work of QE.

7.1 Implications

This research is the first step toward the model-assisted visual analysis
of questionnaire data. Analysts can efficiently discover explainable
relationships between questions and dig further into causality.

techniques. QE proposes an innovative visual analytic approach to
model and present question combinations in questionnaires and designs
a workflow based on question combinations to address the scalability
issue in existing causality visualization.

applicability. The workflow that enables uses balance the exploration
of sets (question combinations) and the corresponding causal sub-graph
can be applied to many other scalable datasets (e.g., urban data based
on numerous sensors). At the same time, the visual encoding and
the interactions of QE are helpful for the visual community to dive
into questionnaire analysis scenarios. As demonstrated in the usage
scenarios, experts can easily find interesting patterns and conduct in-
depth causal reasoning with the help of QE.

7.2 Lessons Learned
The first lesson is about our backend model. In a discussion with survey
experts (P1-2), they mentioned that they prefer model-driven analysis
over data-driven analysis. This is because model-driven analysis is
easier to explain and can be used to persuade decision-makers. Sur-
prisingly, F-GES [35], as a data-driven algorithm, has also gained their
favor. Based on our understanding, as users become more involved in
data-driven algorithms, the credibility of algorithms among users will
increase. Ultimately, analysts will confidently use data-driven algo-
rithms with added constraints to report to decision-makers. The second
lesson is related to the design of analysis systems for tasks that involve
text-intensive data, such as questionnaire analysis. It is important to
provide users with hints about the details they focus on. These hints
include the content of questions, the nature of scales, and basic quality
metrics. They could be provided through the use of tooltip, which can
help remind experts of important information and reduce the burden
of memory. And for some of the more important contents, such as the
question description in the respondent view, we list them directly. This
will make the system more cluttered. But analysts’ thoughts won’t be
interrupted by frequent checking the question description in the tooltips.
The trade-off between aesthetics and text information needs to be more
thoughtfully designed in such visualization systems.

7.3 Limitations and Future Work
To fully support the design requirements, some compromises are made
in terms of scalability. First, the fan-shaped glyphs in the causal view
and the respondent view are designed to encode a question consisting
of multiple options and show the relationships between the questions
and the options. However, the glyph design does not scale well with
questions [18]. In our system, users can set the maximum number of
problems for association analysis to mitigate this limitation. Second, the
system employs UpSet in the question combination view. Although this
method is able to display all features of the questions, it is burdensome
for users to scroll horizontally and vertically to explore all question
combinations and clusters. To alleviate this issue, we further sort
question combinations by importance and provide visual cues to help
users identify the starting point of the analysis. We also plan to explore
other methods [34] to further enhance the scalability of QE.

Currently, QE focuses on the casual analysis of questionnaire data
and assumes that the data are ready for statistical analysis. However,
in real practice, the quality of the data and the design of the question-
naire are also critical as poor-quality questionnaire data and erroneous
questionnaire design can significantly impact the analysis results. The
main influencing factors for the quality of questionnaire data are the
data cleaning process and statistical tests (e.g., reliability analysis, va-
lidity analysis). In the future, we will incorporate certain statistical
test methods into QE to reject low-quality data input or automatically
perform data cleaning for such data. Second, during the initial stage
of questionnaire design, researchers often conduct small-scale surveys.
At this point, they can use QE to analyze pre-experimental data. Based
on the analysis results, researchers can eliminate questions with low
relevance and collinearity, as well as balance the number of questions
within each cluster. However, QE currently cannot detect important
questions that may have been overlooked in the questionnaire, such as
the influence of age on the workplace through an overlooked intermedi-
ate variable like marital status. In the future, we will explore methods
to assist analysts in identifying these overlooked questions.

8 CONCLUSION

This study presents Questionnaire Explorer, a novel visual analytic sys-
tem that enables target-based causal reasoning, association explanation,
and open-ended exploration. We propose an association-based com-
puting method to extract relevant question combinations with potential
causality. To interactively explore these combinations, we designed
a matrix-based system for visualization. At the same time, we inno-
vatively enable users to explore causal sub-graphs of each question
combination to alleviate the scalability issue of current causality visu-
alizations. The proposed system has been evaluated through a com-
parative user study based on real-world data. The results demonstrate
the efficiency and usability of our system. In the future, we plan to
incorporate natural language processing methods for semantic-based
analysis and expand the system’s support for more data types.
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