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Fig. 1. Reassemble a defect object via PuzzleFixer. Given a set of fragments with matching errors, PuzzleFixer successively provides
three stages to solve the puzzle: 1) inspection stage that allows users to find and pick out the mismatches, 2) exploration stage that
supports searching for possible solutions from a large number of matching candidates, and 3) confirmation stage that ensures the
accuracy and efficiency of manual alignment of fragments.

Abstract—We present PuzzleFixer, an immersive interactive system for experts to rectify defective reassembled 3D objects. Re-
assembling the fragments of a broken object to restore its original state is the prerequisite of many analytical tasks such as cultural
relics analysis and forensics reasoning. While existing computer-aided methods can automatically reassemble fragments, they often
derive incorrect objects due to the complex and ambiguous fragment shapes. Thus, experts usually need to refine the object manually.
Prior advances in immersive technologies provide benefits for realistic perception and direct interactions to visualize and interact with
3D fragments. However, few studies have investigated the reassembled object refinement. The specific challenges include: 1) the
fragment combination set is too large to determine the correct matches, and 2) the geometry of the fragments is too complex to align
them properly. To tackle the first challenge, PuzzleFixer leverages dimensionality reduction and clustering techniques, allowing users to
review possible match categories, select the matches with reasonable shapes, and drill down to shapes to correct the corresponding
faces. For the second challenge, PuzzleFixer embeds the object with node-link networks to augment the perception of match relations.
Specifically, it instantly visualizes matches with graph edges and provides force feedback to facilitate the efficiency of alignment
interactions. To demonstrate the effectiveness of PuzzleFixer, we conducted an expert evaluation based on two cases on real-world
artifacts and collected feedback through post-study interviews. The results suggest that our system is suitable and efficient for experts
to refine incorrect reassembled objects.

Index Terms—Immersive visualization, interactive exploration, fragment reassembly, cultural heritage

1 INTRODUCTION

Reassembly, which reconstructs the fragments of a fractured object to
restore its initial state, is an imperative task to recover the function and
value of the object. It has proven benefits across various application
domains, such as artifact reassembly in archaeology [43], fracture
restoration in surgery [58], and physical evidence reconstruction in
forensics [26]. Prior research on reassembly is built upon the advances
in 3D scanning technology and geometry processing, mainly developing
automatic approaches that match the adjacent fragment pairs [28, 39]
and gradually merge the pairs until the fractured object is restored
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[53, 68]. While these methods significantly improve the reassembly
efficiency, their success rates are still far from satisfying as the broken
pieces and missing fragments cause large noises and ambiguities [22,
24]. Therefore, experts need to manually fix the errors after object
is automatic reassembled. For example, analysts usually observe the
semantic features (e.g. textures and global appearance) to identify the
mismatches and adjust the position and rotation of the fragments when
manually reassembling an object [9, 20].

Various techniques have been proposed to facilitate manual reassem-
bly of 3D fragments, including direct interaction [33, 48], automatic
alignment assistance [36] and immersive reassembly tools [20, 50].
However, most of these techniques assemble the fragment from the
scratch, requiring for many efforts from users to find and align the
fragments. Recently, Lima-Hernandez et al. [9] has largely simplified
such laborious work by introducing automatic techniques into manual
reassembly. They pre-assembled the fragment pairs to derive coarse
results before manual correction. However, these previous methods do
not provide visualization of the internal match relation between mul-
tiple reassembled fragments, which is essential for experts to identify
the mismatches during reassembly correction.

We collaborate with six experts from cultural relics protection to
develop our system that facilitates object correction. Considering that
the fragments and the reassembling interactions in our situation are
inherently three-dimensional, we adopt virtual reality (VR) techniques
which enable realistic perception of the 3D objects and direct con-
trol over the movement and rotation of the fragments. We identify
two challenges in developing the system. First, finding the optimal



solution to correct the mismatches is laborious since it requires fre-
quent observation and comparison of the shape and match relations
among multiple reassembly solutions. The massive reassembly pos-
sibilities are overwhelming for experts as they need to determine the
reassemblies correctness based on excessive fragment relations and
detailed information on the surface. Second, it is difficult to rectify
the alignment between multiple fragments. Direct mid-air interaction
provided by the immersive system allows users to intuitively transform
the fragments [22] and specify which part of the fragment surface
should be matched and aligned. However, when matching multiple
fragments, users need to simultaneously control the transformation of
each fragment and justify the alignment accuracy of fragments with
several factors (e.g. the alignment of detailed surface and the overall
appearance). This reduces the direct interaction efficiency as the scale
and shape complexity of the fragments increase.

To overcome these challenges, we propose PuzzleFixer, an semi-
automatic interactive system for experts to better visualize and correct
the defective reassembled object in the immersive environment. Based
on automatic matching techniques, PuzzleFixer provides multi-level
exploration and instant feedback, which enables detection of reassembly
errors, identification of possible matches, and refinement of detailed
alignments. To address the first challenge, PuzzleFixer automatically
generates reassembly categories according to matching similarity. Each
category provides coarse matching results (e.g. which fragments are
matched and their coarse transformation), allowing experts to exclude
unreasonable solutions and explore the remaining ones in depth. To
ease matches finding, we place the solutions in front of users and
order the solutions by their matching similarities. For the second
challenge, we augment reassembled objects with 3D node-link network
where a node represents a fragment and an edge connects a pair of
matched fragments. Based on the network, we design visual and force
feedback to help users align the fragments. Specifically, when users
are interacting with fragments, PuzzleFixer instantly generates edges
between the matching faces on the fragments and guides the fragment
transformation by introducing resistance along the edges of the matched
faces to prevent these faces from being separated. We demonstrate the
usability and effectiveness of our system by conducting two case studies
based on a real-world cultural relic restoration. We further collected
expert feedback from a semi-structured interview and reported insights
and suggestions about our system.

To summarize, our contributions are listed as follows:
• We developed PuzzleFixer, an interactive system for defective

reassembled object correction, featuring reassembly cluster visu-
alization for solution exploration and instant feedback guidance
for efficient alignment.

• We conducted case studies on the reassembly of a set of real-world
culture relics fragments and collected feedback from six domain
experts, which provided insights into reassembly correction.

2 RELATED WORK

Automatic Reassembly Process for Virtual Fractured Object. Auto-
matic reassembly of fractured objects is a vibrant and complex topic
in graphics and cultural heritage research. It aims to calculate the
relative position of each fragment model (e.g., 3D meshes converted
from physical fragments) and construct the virtual entirety shape in a
fully automatic way. Due to the great advantages in terms of efficiency
and avoidance of secondary damage, the automatic reassembly process
has been extensively studied for various applications [4, 40, 58, 65].
Papaioannou et al. [39] systematically presented the pipeline for au-
tomatic fragment reassembly, which classified the process into two
phases: pairwise matching and multi-part optimization.

The pairwise matching phase generates a set of potentially correct
matches that align pairs of fragments through fracture surfaces. It
extracts various geometry features from the fragment models, searches
all possible fragment pairs, and provides each pair a score indicating
its match quality [12, 16, 21]. For example, Huang et al. [21] used
a forward search algorithm to find and measure the fragment pairs
based on the sharpness and roughness similarity of faces. Later, Zhang
et al. [68] improved the matching robustness for thin-shell objects

by matching fragments against predefined templates before matching
search. Recently, a coarse-precise matching strategy [28, 65] was
proposed, which rapidly excludes a large number of impossible matches
based on salient features before searching and aligning fragment pairs
precisely. In this work, we leverage various state-of-the-art methods
[28, 32, 63] depending on the fragment type used in our case studies
to generate potential fragment pairs with scores and alignments for
manual reassembly correction.

The multi-part optimization is responsible for determining correct
matches and constructing the entire object. Current methods for multi-
part optimization are generally based on graph optimization. In particu-
lar, a reassembly graph is generated where a node represents a fragment
and an edge with weight represents a pairwise match and its matching
score. Reassembly can be built by finding the maximum cumulative
score on edges using the shortest path algorithm [40, 41]. To increase
the quality, some of the common constraints, such as loop closure [24]
and non-intersection constraint [21], are introduced to ensure stable
transformation of fragments without penetration. Building upon the
constraints, Zhang et al. [68] iteratively selected the edge to maximize
the score using the greedy-based method. Sizikova et al. [53] proposed
a genetic algorithm to increase the robustness of noisy and incorrect
matches. Although these methods are promising, the results are not al-
ways reliable due to low quality of fragments caused by inevitable field
damage [39] as well as local optimum problem induced from optimiza-
tion algorithms. We leverage multi-part optimization approaches to
pre-reassemble the object before manual refinement and obtain match
relations between fragments. Based on the result, we design efficient
visualizations and interactions to help experts identify the problem
region and refine the reassembly in the immersive environment.
Immersive Interface for Manual Puzzle Solving. Solving the virtual
fragment puzzle manually requires users to understand the process of
reassembly and accurately control the fragment model in 6 degrees of
freedom (DOF). Given the benefits of visualizing and interacting 3D
data [66, 69, 72], many immersive systems have been developed for 3D
reassembly tasks [6, 7, 20]. One of the most common approaches for
enhancing interaction accuracy is to augment the object with visual
cues. For example, Sreng et al. [54] designed sphere and arrow glyphs
with visual effects to indicate real-time distances and angles between
objects. Weiß et al. [60] overlaid the target region with a crosshair
glyph and pie chart to show the splicing position and transforming angle
while operating objects. Besides visual guidance, some approaches
propose the precise mode to improve the accuracy of manual operation
[22, 46, 50]. In contrast to direct interaction with free-hand movement,
the precise mode only allows objects to be transformed in one DOF at
a time. Apart from the fully manual method, some studies designed
the snap effect [20,33] that automatically aligned a fragment pair using
geometry processing such as iterative closest point (ICP) [49].

However, these methods do not consider aligning multiple fragments
with complex shapes and match relations. As the number of regions on
the fragments increases, visualizing and specifying the correct regions
to align becomes a challenge. We design instant visual and force
feedback according to the relative position of the current fragments to
improve the efficiency of manual alignment.
Integrating Human Knowledge with Automatic Reassembly tech-
niques. Due to the limitations in the automatic reassemble process and
manual matching in practice, semi-automatic tools that integrate human
knowledge with matching algorithms have been developed to empower
the reassembly performance. One of the integrating strategies is to
precompute pairwise matching candidates for users to identify correct
matches. For example, Brown et al. [5] allowed users to iteratively
compare and identify matches through small multiples after all candi-
dates were automatically found. Similarly, Deever and Gallagher [10]
visualized the automatically assembled document pieces in order of
similarity to facilitate evaluation. Besides, to improve the candidate
quality, Palmas et al. [37] enabled users to define alignment constraint
points directly on fragments to instruct the automatic matching process.
Yet these approaches are worked in the traditional desktop environ-
ment. Recently, 3D Puzzling Engine [9] visualized precomputed rough
alignments of fragment pairs in immersive space. These pairs were



augmented with matching lines that served as cues for users to estimate
and manually refine the matches.

While most systems enable users to assemble the unaligned frag-
ments, only a few studies have investigated refining the reassembled
object. Refining the reassembly introduces extra tasks, including iden-
tifying mismatches in objects and finding the correct reassembly from
numerous candidates. We propose PuzzleFixer, which visualizes match
relations with an embedded node-link diagram. Our system further
enables level-of-detail explorations that visualize and filter the potential
reassemblies from coarse match relations to fine shape details.

3 BACKGROUND

Automatic reassembly approaches generate reassembled objects for
expert review and correction. This section introduces the concept of
automatic reassembly and describes the data produced by automatic
reassembly techniques.

3.1 Automatic Reassembly

face segmentation match between faces aligned fragments

Fig. 2. A demonstration of the automatic reassembly procedure (models
from huang et al. [21]). Left: The surface of a fragment is segmented
into fractured faces (colored) and intact faces (white). Middle: A pairwise
match between two fragments. Right: The aligned fragments.

Automatic reassembly identifies the fractured face of each fragment,
and determines fragment relations (which fragments are matched) and
their transformation (how the matched fragments align with each other).
The final result of automatic reassembly is a reassembled object com-
prising all fragments with their respective transformations determined.
Specifically, there are three steps in automatic reassembly, as shown in
the following:
• Step 1: Face Segmentation. The fragment surface is categorized

into 1) fractured faces caused by object damage, which are to be
matched with other fractured faces; and 2) intact faces, which are
used to construct the profile of the original object (Fig. 2 Left).

• Step 2: Pairwise Matching. With the fractured faces, the reassembly
procedure finds the potential matches between all pairwise fragments
and generates alignment for each match. Here we define a match is
an adjacent relation, which refers to a pair of fractured faces of two
fragments that can be adjoined against each other (Fig. 2 Middle). An
alignment is the transform of the matched fragments (Fig. 2 Right).
It comprises the transformation of the matched fragments to make
the fractured faces merge with each other. For each match, a score is
recorded to represents the alignment accuracy.

• Step 3: Multi-part Optimization. Finally, a reassembly is generated
from a set of pairwise alignments by the multi-part optimization
approach. Specifically, the procedure gradually selects a pairwise
match from the set that maximizes the accumulated matching score,
merges the match to the current reassembly while optimizing all the
reassembled alignments under certain constraints (e.g, prevent inter-
penetration). All possible selections construct a reassembly space,
which includes all combinations of the fragments with different
alignments. It has been proven that search for the optimal reassembly
from a reassembling space is a NP-hard problem [11].

In summary, automatic reassembly provides pairwise matches and
alignments with accuracy scores and constructs an entire object from
the reassembly space.

3.2 Data Description
The data produced by automatic reassembly consists of shape and rela-
tion data. To visualize and interact with the reassembly from pairwise
matches to global alignments, we further differentiate the two kinds of
data from different levels.

Data Type from reassembled objects includes the 3D shape and its
corresponding match relations.
• Shape Data contains information of 3D fragment models that illus-

trates what the reassembly look like. The shape of a fragment is
defined by: 1) a triangle mesh that constructs the surface of the frag-
ment, and 2) the transformation (i.e., position and rotation) of the
fragment. Shape data describes fragment faces and alignments, and
provides virtual models for experts to visualize and interact with.

• Relation Data includes the fragment matches and their corresponding
scores, explaining how fragments are reassembled. Previous studies
have introduced the concept of graph structures to represent fragment
relations, including weighted graphs [21], directed multi-graphs [24]
and reassembly graphs [68]. In our study, we describe fragment
relations with a matching graph G = (F,E). Specifically, each node
fi ∈ F in the graph denotes a fragment that contains M segmented
faces sim ∈ fi,m = 1, . . . ,M. An edge eim, jn ∈ E represents a match
between the m-th face on fi to the n-th face on f j. Each edge eim, jn
includes a score pim, jn that measures the alignment accuracy between
sim and s jn . Particularly, if a sim have not yet found its matched
fractured face, we denote its edge as eim,−1 and assign it a zero
score. Therefore, relations in a reassembly can be illustrated by an
undirected graph weighted by scores.

Data Level decides the level of details that visualizations and interac-
tions can access. The data produced by automatic reassembly ranges
from the transformation between fragment pairs in one reassembly to a
set of reassemblies. Therefore, we further categorize the data into three
levels (Fig. 3):
• Candidate Level data consists of a set of possible reassemblies from

the reassembly space. Each reassembly is a reassembled object with
different matches and alignments. Hence, candidate level data mainly
provides an overview of all possible solutions to reassemble the given
set of fragments.

• Fragment Level data is obtained from a set of reassembled fragments.
The relation between a fragment pair fi, f j is represented by a match
together with the average score on all aligned fractured faces, which
is denoted as ei, j and pi, j. Data at this level provides an important
basis for correctness judgment of reassembly, such as texture conti-
nuity across adjacent surfaces and the score from the inside aligned
fractured faces. Therefore, the fragment level data is mainly used for
correctness check of a reassembly.

• Face Level data comprises both intact and fractured faces on each
fragment. Each fractured face is characterized by one score. Unlike
automatic matching techniques generally based on geometrical fea-
tures of fractured faces, human experts further use semantic features
(e.g. textures and inscriptions) on intact faces to visualize the re-
assembly. Reassembling at this level focuses on refining the matches
between faces.

4 REQUIREMENT ANALYSIS

To guide the system design, we first abstract the reassembly tasks
into inspection, exploration, and confirmation stages. We then derive
experts’ requirements in each stage.

4.1 Workflow for Reassembly Optimization
To clarify the tasks experts need to perform in the correcting process,
we conducted a semi-structured interview with two experts in the dig-
ital restoration domain. One expert is well experienced in automatic
reassembly and digital protection of cultural heritage for over ten years;
the other is a professor who specializes in geometry processing and
visualization for 3D cultural heritage artifacts.

In the interview, the experts revealed that optimizing the reassembly
relies on the selection of correct matches and interactions for refining
alignments. To ensure the efficiency in such process, they conduct
analytics tasks on both reassembled object observation and possible
solutions searching. Observation task aims to judge the correctness
of the reassembly and identify mismatches. Based on the observation,
exploration task is conducted to learn the reassembly space and deter-
mine potential matches that can be aligned correctly. Subsequently,
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Fig. 3. Three levels for characterizing the reassembling data (models from huang et al. [21]). The candidate level includes all possible combinations
of fragments. The fragment level data serves a fragment as a unit and reveals the quality through fragment relation scores (numbers on the edges).
The face level data serves one face relation as a unit, shows which faces are used to align the fragments (e.g. f5 aligns with f3 with 2 faces, and f6
has one mismatched face).

they conduct alignment task to carefully align the matched fragments
by adjusting their transformation through direct manipulation. Comple-
tion task is finally performed by automatic reassembly that restores the
entire object based on the refined alignments. In addition, they perform
all the tasks iteratively since matches changed in one region may lead
to changes and even errors in other regions, thus causing a knock-on
effect.

Based on interview results, we propose a three-stage iterative work-
flow that integrates the tasks with automatic reassembly techniques for
reassembly refinement (Fig. 4):
Inspection Stage: At the beginning of optimization, experts conduct
the observation task to identify mismatches from the reassembled ob-
ject, which is generated by automatic reassembly approaches. The
mismatches are unveiled by several features, such as the overall discor-
dant shape appearance, discontinuous surface texture between adjacent
fragments, and low matching score measured by feature similarity on
matched fractured faces. When mismatches are identified, the expert
needs to disconnect the corresponding edges and divides the object into
multiple reassembly groups.
Exploration Stage: In this stage, the expert performs exploration task
to determine possible solutions for mismatches. These solutions can
be obtained by traversing all possible alignments between matches.
However, the reassembly space might be too large and presenting all
matches would be overwhelming. Therefore, this stage allows the
expert to efficiently exclude impossible matches and identify a subset
of interests from the large reassembly space.
Confirmation Stage: With a set of potential matches determined, the
expert then needs to confirm the correct matches, refine their align-
ments, and enter the next reassembly iteration through the alignment
and completion tasks. Precisely aligning multiple fragments by direct
interaction is a challenge task, given that merging multiple irregular
faces simultaneously without destroying other aligned faces. Thus,
this stage provides interaction aids to reduce the difficulty and im-
prove alignment accuracy. When experts are satisfied with the current
solution, automatic reassembly approaches will precisely align the mis-
matches that do not covered in the selected candidate and generate the
entire object based on the interaction results.

4.2 Design Requirement Analysis

Based on the workflow, we further communicated with experts, demon-
strated several prototypes of our reassembly system, and collected
feedback regarding detailed concerns of each stage. After several
rounds of refinement, we distilled six design requirements centered
around the three stages to guide the design of our system.
Inspection Stage:
• I1: Visualize fragment shape with relation data. The shape and

Fig. 4. The workflow of PuzzleFixer consists of inspection, exploration,
and confirmation stages. In the first two stages, automatic approaches
provide the data for users to inspect mismatches and explore the re-
assembly space. When the correct matches are aligned and confirmed
in the last stage, the automatic approach restores the entire object.

relation data are crucial for mismatch observation as they provide
match evidence at the fragment level (e.g. how the reassembled
object looks like) to justify the reassembly correctness and the face
level (e.g. similarity between aligned faces) to find mismatched
fractured faces. Thus, the system should integrate fragment shapes
with relation data to facilitate the identification of mismatches.

• I2: Provide intuitive interaction for modifying the matching
graph. Interacting with the matching graph is essential to specify
and remove the mismatches between fractured faces. However, prior
direct interactions on fragment shapes [22, 48, 50] are not enough to
select and remove relation data at face level. Thus, the system should
provide intuitive interactions for match relation modification.

Exploration Stage:
• E1: Present potential reassemblies based on match evidence. To

help experts quickly identify candidates with high matching potential,
reassemblies should be organized in a certain order. Since candidates
are selected by experts based on match evidence, reassemblies should
be ordered by evidence similarity.

• E2: Reveal matching patterns of possible reassemblies. To ex-
clude a large number of unreasonable candidates from the reassem-
bling space, experts need to understand overall patterns of the space,
such as what types of matches are available and the approximate ap-
pearance of each type. Hence, the system should cluster candidates
based on similar match evidence, provide a visual summary of each
cluster to assist experts with correctness justification and focus on
the interested subset of candidates.

Confirmation Stage:
• C1: Enhance awareness of face relations based on instant feed-

back. Aligning fragments manually is challenging since face corre-
spondence will changes in real-time with variations in the relative
positions of fragments. Experts need to constantly check the face
relations to perform appropriate fragment transformation, such as
“Which faces are currently facing?” and “Which direction should
not be moved to retain aligned faces?” Instant feedback on the face
relations can guide experts in fragment alignments and interaction



efficiency enhancement [29, 54, 56, 73].
• C2: Generate precise reassembly according to alignment inter-

actions. Considering the imprecision nature of the direct interac-
tions [34], the system should instantly align manually transformed
fragments precisely to improve the alignment quality. Moreover,
after the expert finishes the confirmation, the system needs to match
the mismatches not included in the chosen candidate and update the
relation data accordingly to form a complete object.

5 PUZZLEFIXER: IMPLEMENTATION AND DESIGN

Based on the requirements, we design and implement PuzzleFixer, a
visual reassembly system that enables experts to refine the reassembled
object in VR. In this section, we first present a usage scenario of the
system to demonstrate the workflow of PuzzleFixer and then introduce
the details in each stage.

5.1 Usage Scenario
We demonstrate how PuzzleFixer can support an expert in fragment
puzzle reassembly on the gargoyle dataset from prior work [21]. The
dataset contains 30 3D segments with 98 fracture surfaces and is de-
scribed by a point cloud with over 3.5 million data points.
Inspecting erroneous matches. When the expert is wearing the VR
headset and controllers, PuzzleFixer immerses the expert in a museum
environment and presents each fragment according to the position
generated by automatic reassembly approaches (Fig. 5a). The expert
quickly notices that the body (highlighted in yellow dotted box) is not
well connected to the head and bottom of the gargoyle statue. To help
experts find the specific mismatches, PuzzleFixer presents matches
with a node-link diagram that shows matches between faces (I1). The
match quality is encoded with a blue-to-green colormap, where a color
closer to green indicates better quality. The expert then navigates to the
matches between the body and other parts (Fig. 5 b1, b2) and identifies
false matches by touching the corresponding edges (I2).
Exploring potential reassemblies. All fragment combinations that
can be reassembled to the body are generated and clustered into sev-
eral groups (Fig. 5c) (E2). Each group is represented by an aver-
aged diagram that indicates the coarse positions and matches of frag-
ments within the group. Averaged diagrams are scattered in front of
users’ view, where adjacent graphs exhibit similarities in positions and
matches (E1). Shapes of the body are presented to visualize match po-
sitions of the closest diagram. The expert gradually shifts the averaged
diagrams to the enlarged body shapes and rotates the shapes to ob-
serve the match position and angles from different perspectives. When
averaged diagram is not ideal as expected, the expert further shifts
the clusters in different directions to search for the others. Through
scanning the diagrams, the expert focuses on the upper-right diagram
since it exhibits a high match quality and matches all faces on the upper
side of the body with regular positions. Thus, he selects the group by
clicking the ”trackpad” on the controller. Accordingly, PuzzleFixer
presents all reassemblies in this group (Fig. 5d). Each reassembly
contains fragments that directly match the body.
Confirming correct matches. After observing the reassemblies shown
in Fig. 5d, the expert chooses one reassembly which contains head-
recognizable fragments. Next, he grabs the fragments and attempts
to align their matches (Fig. 5e). When the expert navigates to the
faces, PuzzleFixer displays the overall shapes through a reassembly-
in-miniature. The facing faces are instantly connected with hint edges
to guide angle and position adjustment for fragment alignment (C1).
Once the expert complete an alignment attempt, PuzzleFixer precisely
aligns the interacted faces. Satisfied with the results, the expert ends
the alignment operation. PuzzleFixer automatically reassembles the
left fragments and matches and shows the final result (Fig. 5f) (C2).

5.2 Inspecting the reassembled object
At the beginning of the workflow, PuzzleFixer visualizes the reassem-
bled object with relation data to help users identify mismatches.
Reassembly generation. Prior research on automatic reassembly has
proposed different techniques for resembling objects in various shapes

and materials. According to the characteristics of the fragments we
used in our case study, we adopt multiple computer graphics approaches
to generate potential reassemble solutions.
• We obtain meshes from the 3D point cloud of fragments by screened

poison reconstruction [23]. Based on the meshes, we adopt a robust
face and boundary extraction approach [63] to get the intact and
fractured faces of each fragment.

• We apply pairwise matching algorithm [28] to calculate matching
scores between all pairwise fragment matches.

• With the scores, we adopt multi-part reassembly [39] to automatically
select the matches and use openGR [31] for alignment and construct
a reassembly result.

Visualizing and identifying the mismatches. We develop Embed
Component to visualize the reassembly with two types of data (I1).
As shown in Fig. 5a, the match between a face pair is presented by
a 3D tube that links between the centers of corresponding fragments.
In particular, we represent an unmatched face by a tube that links
between the face center to its fragment center. The score of each match
is encoded by the color of its face, where the color closer to green
indicates a higher score. Consequently, Embed Component integrates
match relations with fragment shapes with a skeleton metaphor, where
a node represents a fragment, and an edge denotes a match between a
fragment pair. To reduce the visual clutter of edges, we support users to
filter the edges by their scores or direct manipulations. The edge scores
are normalized within 0 and 1. The users can define a threshold to filter
the edges and focus on unqualified matches. In addition, users can filter
edges by direct manipulations through the virtual hands, which allows
the system to only show the interesting matches to reduce edge clutter
and ease mismatch searching.

Based on the skeleton metaphor, PuzzleFixer provides three kinds
of interactions to support mismatch identification and modification:
• Object navigation. PuzzleFixer provides grab and transform gestures

that allow users to transform the entire object. The object and its
edges will be rotated and shifted synchronously with hand transfor-
mation. Users can also freely move in the virtual space to observe
the object from different perspectives.

• Match modification. Face Component leverages touch gesture to
enable users to identify mismatches (I2). The touched edge will be
replaced by two disconnected edges that represent the corresponding
mismatched faces (Fig. 5b1, b2). Moreover, the user can touch an
intact face to switch the material between translucent or opaque to
focus on the edges or surface texture.

• Target group selection. When mismatches are specified, the object
is divided into several interconnected fragment groups. PuzzleFixer
allows users to select a target group via touching gesture. Next, the
user can explore how the remaining groups match with it.

5.3 Exploring reassembly candidates
Based on the mismatches, PuzzleFixer first generates all possible can-
didates, then features Layout Component and Cluster Component to
support overall reassembly pattern understanding and help users pro-
gressively find the correct reassembly, respectively.
Candidate generation. Given the groups G = {G1,G2, ...,Gn}, Puz-
zleFixer generates matching candidates by permutating the mismatches
between the target and other groups:

(nGi
k

)(nG′
k

)
k!, where Gi is the

target group and G′ is the set of remaining groups other than Gi.
nGi and nG′ are the number of mismatches in Gi and G′ respectively,
k = min(nGi ,nG′). We use the mean of pairwise matching scores to in-
dicate the match quality of a candidate. Since the number of candidates
grows combinatorially with the increase in the number of mismatches,
we set up two rules to exclude impossible matches to ensure genera-
tion efficiency: 1) alignments of the permutation matches cannot be
achieved by breaking down the other alignments within that group, and
2) fragments should not penetrate into another after alignment. These
rules help to eliminate meaningless candidates before user exploration.
Layout of candidates. PuzzleFixer applies Layout Component to dis-
tribute candidates based on the similarity of their skeleton to facilitate
match identification (E1). Specifically, Layout Component 1) calculates
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Fig. 5. Reassembling the gargoyle statue. (a) The fragments are automatically reassembled and visualized with the embedded node-link network.
(b1, b2) The user modifies the error matches with hand gestures. Based on the modification, the possible matches are clustered and presented
through summarized skeleton diagrams (c). Shapes of the reassemblies from the selected cluster are visualized in (d). In (e), the user manually
aligns the faces. The other fragments are reassembled automatically, as shown in (f).

Chamfer distance [3, 47] between the nodes on the skeletons to repre-
sent similarities between candidates, and 2) performs dimensionality
reduction using t-SNE [18, 57] to obtain candidate distribution on a
2D canvas. Previous studies [8, 30] have confirmed the efficiency of
exploring 3D small multiples using a flat layout in an immersive setting.
Following this method, we place canvas vertically in front of users. We
leverage t-SNE to ensure the similarity between neighboring candidates
and reveals patterns of the matched shapes.

Supported by Layout Component, PuzzleFixer uses the grab and
transform gestures to achieve the following interactions at candidate
level:
• Candidate navigation. After users grab the controller in the mid-

air, all candidates are panned along with the canvas and rotated
synchronously according to hand transform.

• Candidate selection. Layout Component zooms in on candidate to
be selected to perform a focus by context layout. Users can select the
enlarged candidate for further in-depth analysis.

Candidate Clustering Candidate Average Cluster Layout

cluster1 cluster2 cluster3

→

averaging skeleton in cluster1 cluster1 cluster2 cluster3

Fig. 6. The visual summary of candidates. Clusters are first identified
by the layout position of each candidate and then visualized through
the average skeleton. The cluster layout follows the rules from Layout
Component and presents the target group shape of the cluster at the
canvas center for focused observation.

Visual summary of candidates. After dimensionality reduction, candi-
date are represented by a scatterplot on a 2D plane. Cluster Component
groups candidates and provide a level-of-detail searching approach
to prevent the exploration from getting overwhelming (E2). Specifi-
cally, Cluster Component uses DBSCAN [13] to group candidates into
clusters. We choose DBSCAN since it has been widely used to show
the patterns of points after dimensionality reduction [15, 19, 45]. We
perform two steps to generate visual summary of candidates (Fig. 6): 1)
generate an average skeleton by averaging each fragment node in each
candidate skeleton; 2) place the average skeleton at the mean position of
the nodes it refers to. The score of each cluster is averaged and encoded
by the corresponding skeleton color. Based on the cluster, Cluster
Component supports candidate navigation by 1) categorizing all can-
didates based on the skeleton similarity to avoid visual overwhelming
and 2) providing level-of-detail searching that enables users gradually
find candidates according to coarse match relations and specific shape
alignments. When users complete cluster selection, both the shape and
skeleton of candidates in the clusters are visualized (Fig. 5d).

The visual summary of a cluster mainly incorporates three consider-
ations: 1) expressive so that it shows the essential match evidence for

experts to determine the potentially correct ones, 2) succinct so that the
presented evidence does not require excessive time for judgment, and
3) representative so that it presents the thumbnail of all the candidates
in the cluster. To fulfill the expressive and representative criteria, we
leverage the average skeleton to present the relation data and show
the general form of the clustered candidates. The relative positions
between the matching edges (i.e., edges which match the fragments to
the target group) provide feedback on which faces are matched. The
edge color indicates the quality of the alignment. For the succinctness,
we avoid showing the surface of each cluster because it contains many
detailed matching evidence (e.g., specific shape alignments and tex-
ture continuity) that requires much time for in-depth analysis of each
candidate individually.

5.4 Confirming the matches
We design Matching Component and Snapping Component to assist
with manual alignment (C1) and obtain precise reassemble results (C2).

a bvisual 
feedback force 

feedback

Fig. 7. The demonstration of two instant feedback. (a) visual feedback
instantly shows a facing match. (b) force feedback adds the resistance
(red arrow) along with the edge of a confirmed match.

Aligning fragments with instant feedback. PuzzleFixer allows users
to align face pairs by grabbing inside the fragment shape and trans-
forming the fragment with the controller. To guide the alignment,
Matching Component provides two kinds of feedback (Figure 7): 1)
visual feedback that instantly shows the aligning matches with a 3D dot-
ted tube, which links faces that are currently close and facing each other
and matches confirmed by previous alignment attempts; 2) the force
feedback that exerts a resistance along with the edges of confirmed
matches when these aligned faces are dragged away or the directions
in which they are facing are changed. The visual feedback presents
instant relations between the aligning faces, help users explore whether
the matches are in agreement with their expectation. Instead of provid-
ing force feedback from the controller [2, 25], we use the change in
the fragment transformation relative to the controller to create a force
feedback cue. Specifically, as the user holds a fragment by grabbing
the controller, the controller acts as a realistic reference to map its trans-
formation directly onto the fragment without scaling. However, when
the fragment is partially matched, those fragment transformations that
lengthen the confirmed edges will be applied with a constant decreasing
factor. Consequently, the user needs a larger transformation magnitude
to move away from the prior matched faces until the distance between



the matched faces exceeds a threshold. This decreasing transforma-
tion mapping reduces the impact of misoperations (e.g., matches new
faces but breaks previous ones), while creating a perception that the
fragments are dragged by the edges.
Reassemble fragments with precise alignment. After the match is
confirmed, Snapping Component uses a magnetic metaphor to auto-
matically align the corresponding faces. We use the global registration
technique [31] to perform a precise and fast alignment according to
the meshes of matched face pairs. After all matches are confirmed,
PuzzleFixer calls the automatic method to reassemble left mismatches
and starts next iteration.

5.5 Implementation
The PuzzleFixer is implemented in a server-client architecture. The
client provides an immersive environment for users to perform the
reassembly workflow. We use Unity and HTC VIVE VR system with
two hand controllers to set up the immersive environment and express
the hand gestures. The server is built with Python for dimensionality
reduction, clustering, and automatic matching methods. Specifically,
we use scikit-learn [42] to generate clusters. These task are performed
asynchronously to ensure interaction fluency. ZeroMQ [1] is applied to
send and receive messages between the server and client.

6 EXPERT EVALUATION

We invited six domain experts to evaluate PuzzleFixer on a real-world
cultural relics dataset. We report the study settings, two cases of
reassembling process conducted by the experts, and the qualitative
feedback and insights from the post-study expert interviews. We didn’t
perform quantitative analysis due to the limited sample size.

6.1 Study Settings
Dataset and preprocessing. The dataset is digitized from Ma Lin
Broken Stele, engraved with calligraphy on its surface, and has high
artistic and historical value. The dataset consists of ten broken stones of
various sizes and in irregular shapes, with a total of 33 fracture surfaces.
All the stone fragments are scanned and converted to Wavefront format
files for 3D model presentation. We apply surface segmentation [63]
and pairwise matching [28] to obtain an initial reassemble result with a
matching structure and matching score.
Participants. We invited six experts (P1-P6; age: 23-52) from the
university and museum to participate in our interview. One of the
experts is a professor engaging in the field of restoration of digital
artifacts. Another expert is a researcher who has experience in archae-
ology and cultural heritage protection for over 20 years. Other experts
major in digital artifact modeling and restoration. All the experts have
experience in manual reassembly in virtual reality. Only the professor
participated in our previous workflow discussion.
Procedure. We conducted one-on-one interviews with the six experts.
The interview included four parts: 1) We introduced the concepts of
three-stage workflow and six components of PuzzleFixer, following a
system demonstration to present the process of reassembly refinement
(20 minutes). 2) After the introduction, we asked them to set up the VR
headset and repeat the process in the demonstration to get familiar with
the system (15 minutes). 3) When experts were confident in operating
the system, we changed the dataset to the Ma Lin Broken Stele and
encouraged the experts to reassemble the fragments (20 minutes). 4)
The procedure concluded with a semi-structured interview, including
the subjective perception, evaluation of workflow and each system
component, and suggestions for improvement (30 minutes).

6.2 Case Studies
Case I: Finding Correct Matches from Series of Errors. This
case produced by P1 focuses on identifying mismatches and searching
for correct solutions.
Inspecting the reassembly fragments. After importing the dataset,
the expert glanced at the reassembled object and quickly noticed the
discordant fragment in the upper right area through the mismatched
edges and the blue fractured faces (Fig. 8a). The skeleton showed that

Fig. 8. Identify the mismatches. (a) The skeleton reveals the mismatches
from f1. (b1) The faces show s4,1 and s5,1 are inscribed faces, which are
not matched with s2,1 and s3,1. (b2-b3) the mismatch e2,4 is disconnected
through touch gestures. (c) a target group is selected.

there were several mismatched faces on f1. Thus, he dragged the object
closer to disconnect e1,4 and navigated to the bottom half of the stele
(highlighted in the blue dotted box) for detailed observation. Through
the inscription letters and the decorations on the surfaces (Fig. 8 b1),
the expert found that their faces (s2,1 and s3,1) were discontinuous with
their adjacencies (s4,1 and s5,1). Thus, he considered edges e2,4 and
e3,7 were incorrect and disconnected them accordingly (Fig. 8 b2, b3).
After identifying these error matches, he chose the largest group (Fig.
8c) as the target group and entered the exploration phase to see the
possible solutions.
Exploring the candidates. As shown in Fig. 9 a1, the system presented
the clusters of reassembly results in a plane canvas. The expert noticed
that the overall results showed two forms: all the fragments were
concentrated below the target (upper area of the canvas) or matched at
the lower and the upper right area, respectively. Since the initial result
was presented in the latter form, the expert was curious about what all
the other fragments matched below would look like. Through scanning
those clusters, he noticed that all the mismatched edges at the bottom
of the skeleton sk1 had corresponding edges with reasonable matching
angles. Hence he selected it for further exploration.

Fig. 9. Explore and confirm the matches. (a1) Clusters show two patterns
of the matching location. (a2) Candidates present the result with shapes.
(b1) Two candidates selected by the expert. (b2-b3) Decorations on the
surface show the continuity of the neighbor fragments. (b4) Align the
matches by the grab and transform gesture.

As shown in Fig. 9 a2, the candidates in this category matched f2
and f3 to the same position while enumerating a variety of matching
possibilities for f1. After panning and rotating the candidates, the
expert quickly ruled out candidates whose appearances were obviously
incorrect and selected candidates c1 and c2 to explore their details.
Confirming the matches. The filtered candidates were placed side-by-
side (Fig. 9 b1). To identify the correct one, the expert hid the skeleton
and focused on the surface around the matching regions. He recognized
that the decoration on faces s5,1 and s1,1 was continuous in c1 (Fig. 9
b2) but not in c2 (Fig. 9 b3). Hence, he confirmed that f1 and f5 in
c1 were matched correctly and refined their alignment following the
visual feedback (Fig. 9 b4). After the expert finished the alignment
refinement, PuzzleFixer automatically aligned the remaining fragments
and entered the inspection stage in the next iteration.



Fig. 10. Finishing the stele reassembly. (a) The skeleton and shapes shows two separate groups. (b) The clusters reveal that other fragments can be
matched at bottom or left side of the target group. (c) The candidate in the selected cluster has the same appearance but different match relations.
(d) The selected candidate has three groups. (e) Visual cues are shown in real-time when transforming the fragment groups. (f) Force cue is added
on the e1,2 to help rotate the g3 to align f3. (g) The reassembled stele after finishing the workflow.

Case II: Assembling Fragments with Manual Matching. In
this case, P3 completed the refinement mainly based on the exploration
and confirmation stage.
Finding the potential matching shapes. At the beginning, the object
was composed by two separate groups, g1 and g2 (Fig. 10a). The
expert noted that the right part of g1 seemed neat, while the fragment f4
had several mismatched edges. Thus, he disconnected f4 from g1 and
selected the remaining right part as the target to explore the matching
opportunities. As shown in Fig. 10b, the Layout Component showed
two general matching styles: the clusters inside the gray circle tended to
concentrate the matching position on the left surface of the target group,
while the rest matched more fragments at the bottom of the target group.
The expert was interested in how to match the target from the left. Thus
he focused on the candidates in the circle and chose cluster sk5, where
all the left-mismatched edges in the target had corresponding matches.
The selected candidates showed that their shapes were similar, and they
only differed in the correspondence of the faces (Fig. 10c). Therefore,
by default, he selected c1 with the highest matching score to manually
align the matches.
Correcting the matches with transform level interactions. As shown
in Fig. 10d, the candidate contained three groups. The expert started
with the match between g1 and g2. By grabbing the group, the matching
cues were visualized to inform the instant matching face and indicate
how to transform the fragments (Fig. 10e). Thus, he aligned the
matches by dragging g1 according to the cues to refine the alignment.
Next, to refine the alignment of g3, the expert observed the details on
the surface and realized that g3 was matched incorrectly. Hence, he
decided to turn g3 around for alignment. To this end, he first confirmed
the match e1,2 by dragging f2 closer to f1 along the matching cue
line (Fig. 10f). To finish the alignment for f3, he rotated g3 around
the aligned edge (e1,2). The force feedback was imposed along the
matched edge to ease the rotation by preventing tilting or stretching
the edge. When he finished fragment transforming and released the
grab, Snapping Component immediately aligned f1 and f2 together.
After alignment, the expert was satisfied with the match (Fig. 10g)
and reviewed the result: the stele was relatively complete, while some
fragments were missing between f1 and f2 in this stele dataset.

6.3 Observations and Expert Feedback

Time performance and usability. All participants could successfully
correct the reassembly with a maximum of four iterations. The average

completion time of the participants was 14.3 minutes (1.1 min, 1.2
min, and 1.4 min in each stage, respectively). Note that we see these
times as qualitative evidences due to the limited sample size. We found
that the participants did not take much time during the exploration
stage as they tended to roughly select several candidates rather than
one for subsequent in-depth analysis. The confirmation stage is time-
consuming as most of the participants needed to work back and forth
to confirm the alignment correctness when transforming the fragments.
Nevertheless, the participants were able to refine several mismatches
within an object in one iteration within a few minutes. As for the
usability, the participants thought that the system was easy to use and
the interaction was intuitive, suggesting that “the graph modification
of VR operation is not difficult” (P1) and “these operations are just a
matter of habit” (P5). Some experts criticized that the system should
be improved by adding, for example, “more remarks to explain the
operations” (P2) and “fallback function to reselect the candidates” (P3).
We take these suggestions for future improvements.

Refine the reassembly based on suggestions. We were interested
in the comments about integrating automatic reassemble results into
manual reassembly refinement. Overall, the experts confirmed the
usefulness of showing potential reassemblies instead of trying to find
these solutions manually by trial-and-error. This is because that au-
tomatically generated solutions “can show coarse results for me to
evaluate the matching correctness” (P1, P2) and “provide guidance for
manually aligning fragments” (P4-P6). We observed in our case study
that although participants can freely align fragments in the confirma-
tion stage, they prefer to make a minor modification to the generated
reassembly in most cases. A main reason is that fragment alignment re-
quires users to navigate and observe details while controlling fragment
transformation with mid-air interactions. A low-quality candidate may
cause users to make multiple alignment attempts, which is prone to
arm fatigue [51, 55]. If satisfying candidates were not filtered out, the
participants would tend to find and reselect good candidates in next iter-
ation, instead of aligning a worse candidate. This finding suggests that
experts’ interactions tend to rely on automatically generated results.
Assist relation understanding through network embedding. All
experts spoke highly of the network design and showed enthusiasm for
observing the matching results at the inspection stage. P4 thought the
network was intuitive and helpful in enhancing understanding of the
current matching structure. For example, “It intuitively shows match
relations” (P3) and “I can intuitively see whether there is a match



relationship between key faces” (P2). All experts confirmed that they
could find erroneous matches through visualization of reassembled
objects. Nonetheless, we observed that users still spent much time on
navigation. For example, our participants frequently walked around
to observe an object from different perspectives and switched view
between the global appearance and detailed faces. Despite that the
experts believe this real-world-like navigation is intuitive and useful,
its efficiency might be affected by structural complexity of objects.
However, how to improve the navigation of 3D structures with complex
fragment shapes and relations remains unclear.
Improve search efficiency with the level of detail selection. The
experts highlighted the effectiveness of exploring solutions with two-
level filtering. They thought the clusters showed the matching cues
could eliminate a large number of mismatches and guide subsequent
selections. P5 mentioned, “when I observed this cluster, I thought
it would be correct if edges were rotated at the bottom a little bit.
So I will focus on these intended matches in subsequent searches.”
Although P6 thought that selecting the optimal reassembly takes time
due to complexity of the shapes and the large number of reassembling
possibilities, he thought the layout of each reassembly would improve
the search efficiency since it “provides the trend of matches.” While
adding more visual hints can further ease the searching process, we
leave this for future improvements to avoid overwhelming users in the
current implementation.
Reduce interaction laborious with instant feedback. When asked
how instant feedback could assist manual alignment in the confirma-
tion stage, experts reported that instant feedback immensely helped
increase interaction efficiency because “I instantly know which faces
are currently being aligned.” (P5) P1 praised the force feedback as he
said “It limits incorrect fragment transformation” and “helps alleviate
mis-operations.” P6 mentioned that the force feedback allowed him to
align multiple faces sequentially instead of all of them at once, since the
force added on aligned matches “guides me to align remaining faces.”
Suggestions. The experts in our case study pointed out several limita-
tions of our system. First, some fractured surfaces were not detected
in preprocessing. To this end, area selection tools should be provided,
such as the lasso of mesh surfaces, to help users manually add or modify
areas of fractured surfaces. Second, automatic alignment from Snap-
ping Component was sometimes inaccurate, which affects subsequent
matching of surrounding fragments. However, many state-of-the-art
point cloud registration algorithms [17, 38] cannot perform the mesh
alignment within response time or suffer from limitations in alignment
of arbitrary and damaged surface pairs. To solve these problems, we
further exploit a precise mode of direct interaction [50] for manual
alignment improvement. This interaction allows users to gradually
adjust the fragment transformation from one DOF in turn. Third, the
system currently does not support fragment annotation, which easily
leads to confusion between fragments with a similar appearance.

7 DISCUSSION

Significance—incorporating human insights into solving the NP-
hard searching problem. Restoration of important objects is a prereq-
uisite to manifest their value. It’s challenging to find a unique solution
from numerous reassembly possibilities due to the huge reassembly
space, which causes a NP-hard problem. While various automatic
approaches have been proposed to solve the problem, the result fails
when objects are diverse, incomplete, and low-quality [20]. We explore
this direction by incorporating human insights in facilitating the re-
assembly searching. We further developed PuzzleFixer that visualizes
3D fragments with relational networks and provides instant feedback
to facilitate manual reassembly. Our system is evaluated through case
studies on real cultural relics, which shows the usefulness and efficiency
in reassembly refinement in real-life scenarios.
Generalizability—from cultural relic reassembly to educational
demonstration. Although PuzzleFixer is evaluated on thick stele
blocks, the reassembled objects can be extended to types of data such
as thin-shell pottery and shredded paper in manuscripts or images.
Since our reassembly workflow is independent of automatic matching

method, various types of data can be imported to our system once
corresponding method is well prepared. Our reassembly environment
allows users to immerse themselves in a virtual setting and experience
object reassembly, which can be used for cultural relic restoration and
educational purposes. These adaptations allow our system to be used
in other scenarios, such as experiencing cultural heritage protection
[14,27] and understanding the complex anatomical structure [44,62,67].
Potentiality—towards more efficient physical reassembly. Reassem-
bling fragments in virtual reality generates reassembly steps and of-
fers guidance for restorers when conducting the physical reconstruc-
tions [7, 35]. However, in practice, restorers need real-time guidance
that provides in-situ aligning guidance while operating fragment re-
assembly. Guiding physical reassembly with a traditional 2D diagram
cannot instantly show reassembling cues regarding the current perspec-
tive of restorers and fragment situation. While AR has prospects in
crafting and objects assembly by embedding instructions into the phys-
ical context [59, 60, 70, 71], AR-assisted physical reassembly in-situ
raises new challenges such as reassembly simulation, planning, and
designing of collaborative interaction [52,61]. We hope our exploration
will inspire future work in this direction.
Study limitations. Although PuzzleFixer leverages levels of selection
to help users find solutions efficiently with tens of fragments, identify-
ing the optimal reassembly from tens of thousands of candidates is not
supported due to the heavy burden of candidate generation and explo-
ration. To avoid such a situation, we limit the number of mismatches
and fragment groups specified at the inspection stage to no more than
10 and 5, respectively. The other wrong matches inside each group can
be further corrected in next iteration. We also select the top-k clusters
or candidates with the highest average matching score for presentation.
A key observation is that the candidates with a low average score are
usually incorrect. We set k to 15 in our case study, considering the com-
plexity of the shape and structure. Besides, we haven’t considered the
situation where the automatic approaches completely fail to reassem-
ble the fragments into a single object. In this case, it is difficult for
automatic approaches to provide potentially correct candidates. This
makes it difficult for users to take advantage of automatically generated
solutions, and fragment refinements can only be performed manually.
Finally, our system has considered only two types of data, i.e., the shape
data and the relation data. More rich contexts, such as the physical
location of each fragment and classification information [64], can also
promote experts’ judgment and objects reassembly. However, these
new types of data introduce challenges for new visualization designs,
which naturally require further studies. We plan to open source the
manual interaction part of our system to the community1 and involve
more information to facilitate reassembly refinement in the future.

8 CONCLUSION

In this work, we present a virtual reassembly system, PuzzleFixer, to
help experts refine the reassembled object in an immersive environment.
Given a pre-assembled object, our system provides a three-stage work-
flow for users to inspect the mismatches, explore potential solutions
for reassembly, and confirm the alignments. To facilitate mismatch
inspection, PuzzleFixer visualizes 3D fragments with an embedded net-
work to augment the fragment shapes with match relations. Once users
identify the mismatches, PuzzleFixer generates and clusters potential
solutions to provide level-of-detail explorations to facilitate reassembly
searching. Moreover, we design visual and force feedback to improve
manual alignment. We evaluate our system by conducting case studies
on real cultural relics fragments. Insights and expert feedback illustrate
the usefulness and effectiveness of the system and enlighten future
research opportunities.
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